Structural transformations of cytochrome c upon interaction with cardiolipin. 2014

Julia Muenzner, and Ekaterina V Pletneva
Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States.

Interactions of cytochrome c (cyt c) with cardiolipin (CL) play a critical role in early stages of apoptosis. Upon binding to CL, cyt c undergoes changes in secondary and tertiary structure that lead to a dramatic increase in its peroxidase activity. Insertion of the protein into membranes, insertion of CL acyl chains into the protein interior, and extensive unfolding of cyt c after adsorption to the membrane have been proposed as possible modes for interaction of cyt c with CL. Dissociation of Met80 is accompanied by opening of the heme crevice and binding of another heme ligand. Fluorescence studies have revealed conformational heterogeneity of the lipid-bound protein ensemble with distinct polypeptide conformations that vary in the degree of protein unfolding. We correlate these recent findings to other biophysical observations and rationalize the role of experimental conditions in defining conformational properties and peroxidase activity of the cyt c ensemble. Latest time-resolved studies propose the trigger and the sequence of cardiolipin-induced structural transitions of cyt c.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002308 Cardiolipins Acidic phospholipids composed of two molecules of phosphatidic acid covalently linked to a molecule of glycerol. They occur primarily in mitochondrial inner membranes and in bacterial plasma membranes. They are the main antigenic components of the Wassermann-type antigen that is used in nontreponemal SYPHILIS SERODIAGNOSIS. Cardiolipin,Diphosphatidylglycerol,Diphosphatidylglycerols
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D045304 Cytochromes c Cytochromes of the c type that are found in eukaryotic MITOCHONDRIA. They serve as redox intermediates that accept electrons from MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX III and transfer them to MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX IV. Cytochrome c,Ferricytochrome c,Ferrocytochrome c,Apocytochrome C

Related Publications

Julia Muenzner, and Ekaterina V Pletneva
September 2021, Life (Basel, Switzerland),
Julia Muenzner, and Ekaterina V Pletneva
July 2013, Biochemistry,
Julia Muenzner, and Ekaterina V Pletneva
May 1995, Biophysical chemistry,
Julia Muenzner, and Ekaterina V Pletneva
February 2009, Biochemistry,
Julia Muenzner, and Ekaterina V Pletneva
October 2018, Biochemistry,
Julia Muenzner, and Ekaterina V Pletneva
March 2004, Archives of biochemistry and biophysics,
Julia Muenzner, and Ekaterina V Pletneva
December 2015, The Journal of biological chemistry,
Copied contents to your clipboard!