Electrophysiological actions of histamine and H1-, H2-receptor antagonists in cardiac tissue. 1986

U Borchard, and D Hafner, and C Hirth

Electrophysiological investigations of histamine in different cardiac tissues have led to the following results: Histamine and the H2-agonists dimaprit and impromidine show similar actions on electrophysiological parameters of ventricular myocardium (especially a decrease in action potential duration), which are completely blocked by cimetidine and enhanced by the phosphodiesterase inhibitor 1-methyl,3-isobutylxanthine (IBMX). These effects may be explained by an increase in cellular cAMP leading to an increase in slow inward current and outward currents as shown by voltage clamp experiments. Histamine in contrast to IBMX increases action potential duration at 90% repolarization (APD90) in atria. Histamine effects in atrial myocardium are completely reversed by the H1-antagonist dimetindene. Stimulation of atrial H1-receptors is suggested to directly cause an increase in Ca-channel conductance independent of intracellular cAMP content. Histamine reduces AH-interval, increases V max of NH-cells and may induce AV-node arrhythmias (at concentrations greater than or equal to 3 mumol/l). These effects remain unchanged by dimetindene, but are reversed by cimetidine. The results indicate that histamine increases AV-nodal conduction via H2-receptors. Unspecific membrane actions of cimetidine are not observed up to 100 mumol/l. Dimetindene increases action potential duration (APD) in left atria and decreases Vmax at concentrations greater than or equal to 10 mumol/l. However, H1-antagonistic actions of dimetindene are already observed at concentrations 1,000 to 10,000 times lower (pA2-values 8.39-9.12) so that unspecific membrane actions are suggested not to occur on a therapeutic dose level.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008297 Male Males
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D006634 Histamine H1 Antagonists Drugs that selectively bind to but do not activate histamine H1 receptors, thereby blocking the actions of endogenous histamine. Included here are the classical antihistaminics that antagonize or prevent the action of histamine mainly in immediate hypersensitivity. They act in the bronchi, capillaries, and some other smooth muscles, and are used to prevent or allay motion sickness, seasonal rhinitis, and allergic dermatitis and to induce somnolence. The effects of blocking central nervous system H1 receptors are not as well understood. Antihistamines, Classical,Antihistaminics, Classical,Antihistaminics, H1,Histamine H1 Antagonist,Histamine H1 Receptor Antagonist,Histamine H1 Receptor Antagonists,Histamine H1 Receptor Blockaders,Antagonists, Histamine H1,Antagonists, Histamine H1 Receptor,Antihistamines, Sedating,Blockaders, Histamine H1 Receptor,First Generation H1 Antagonists,H1 Receptor Blockaders,Histamine H1 Blockers,Receptor Blockaders, H1,Antagonist, Histamine H1,Classical Antihistamines,Classical Antihistaminics,H1 Antagonist, Histamine,H1 Antagonists, Histamine,H1 Antihistaminics,Sedating Antihistamines
D006635 Histamine H2 Antagonists Drugs that selectively bind to but do not activate histamine H2 receptors, thereby blocking the actions of histamine. Their clinically most important action is the inhibition of acid secretion in the treatment of gastrointestinal ulcers. Smooth muscle may also be affected. Some drugs in this class have strong effects in the central nervous system, but these actions are not well understood. Antihistaminics, H2,H2 Receptor Blockader,Histamine H2 Antagonist,Histamine H2 Blocker,Histamine H2 Receptor Antagonist,Histamine H2 Receptor Antagonists,Histamine H2 Receptor Blockader,Histamine H2 Receptor Blockaders,Antagonists, Histamine H2,Blockaders, Histamine H2 Receptor,H2 Receptor Blockaders,Histamine H2 Blockers,Receptor Antagonists, Histamine H2,Receptor Blockaders, H2,Antagonist, Histamine H2,Blockader, H2 Receptor,Blockaders, H2 Receptor,Blocker, Histamine H2,Blockers, Histamine H2,H2 Antagonist, Histamine,H2 Antagonists, Histamine,H2 Antihistaminics,H2 Blocker, Histamine,H2 Blockers, Histamine,Receptor Blockader, H2
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

U Borchard, and D Hafner, and C Hirth
June 1978, Proceedings of the National Academy of Sciences of the United States of America,
U Borchard, and D Hafner, and C Hirth
February 1980, Biochemical Society transactions,
U Borchard, and D Hafner, and C Hirth
January 1992, Dermatology (Basel, Switzerland),
U Borchard, and D Hafner, and C Hirth
April 1994, Acta crystallographica. Section B, Structural science,
U Borchard, and D Hafner, and C Hirth
September 1979, Molecular pharmacology,
U Borchard, and D Hafner, and C Hirth
February 1975, European journal of pharmacology,
U Borchard, and D Hafner, and C Hirth
January 1979, European neurology,
U Borchard, and D Hafner, and C Hirth
March 1977, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
U Borchard, and D Hafner, and C Hirth
September 1977, European journal of pharmacology,
Copied contents to your clipboard!