Calcium-activated potassium channels and fluid secretion by exocrine glands. 1986

O H Petersen

Fluid secretion by exocrine glands is regulated by neurotransmitters and hormones. The secretagogues act on the acinar cells by switching on two types of conductance pathways: K+-selective channels in the basolateral membrane and Cl(-)-selective channels localized to the luminal membrane. The K+ channels have been quantitatively characterized in patch-clamp single-channel and whole-cell current-recording studies. Opening of the K+ channels is determined by the membrane potential (depolarization enhances the probability of channel opening), and the intracellular free Ca2+ concentration ([Ca2+]i) (a rise in [Ca2+]i increases the open-state probability). The Cl- channels are also controlled by internal Ca2+ in such a way that an elevation of [Ca2+]i favors opening. Secretagogues evoking an increase in [Ca2+]i activate both sets of channels causing a substantial loss of cellular KCl. KCl is taken up via a Na+-K+-2Cl- cotransport mechanism in the basolateral membrane and the Na+ uptake activates the Na+-K+ pump. In the steady-state stimulated situation the three basolateral transport proteins, the K+ channels, the Na+-K+ pump, and the Na+-K+-2Cl- cotransporter operate together as an electrogenic Cl- pump. Cl- exits into the lumen via the Ca2+-activated Cl- channels and Na+ follows through the paracellular shunt pathway. When stimulation of the acinar cells ceases the K+ and Cl- conductance pathways close and the Na+-K+ pump together with the Na+-K+-2Cl- cotransporter operate as a KCl pump, restoring the intracellular KCl lost initially after start of stimulation and secretion stops.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007765 Lacrimal Apparatus The tear-forming and tear-conducting system which includes the lacrimal glands, eyelid margins, conjunctival sac, and the tear drainage system. Lacrimal Gland,Nasolacrimal Apparatus,Conjunctival Sacs,Lacrimal Ducts,Lacrimal Punctum,Lateral Canthus,Medial Canthus,Apparatus, Lacrimal,Apparatus, Nasolacrimal,Canthus, Lateral,Canthus, Medial,Conjunctival Sac,Duct, Lacrimal,Gland, Lacrimal,Lacrimal Duct,Lacrimal Glands,Lacrimal Punctums,Punctum, Lacrimal,Sac, Conjunctival
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005088 Exocrine Glands Glands of external secretion that release its secretions to the body's cavities, organs, or surface, through a duct. Exocrine Gland,Gland, Exocrine,Glands, Exocrine

Related Publications

O H Petersen
August 1991, Journal of bioenergetics and biomembranes,
O H Petersen
January 1985, Ceskoslovenska fysiologie,
O H Petersen
June 1998, Current opinion in neurobiology,
O H Petersen
January 1988, Mineral and electrolyte metabolism,
O H Petersen
February 1992, Biochemical and biophysical research communications,
O H Petersen
January 1992, Methods in enzymology,
O H Petersen
April 1999, Annals of the New York Academy of Sciences,
O H Petersen
January 1989, Annual review of physiology,
O H Petersen
December 1983, Cell calcium,
Copied contents to your clipboard!