Circadian phase determines effects of repeated ethanol vapor exposure and withdrawal on body temperature and activity rhythms of male mice. 2014

Amanda S Damaggio, and Michael R Gorman
Center for Chronobiology and Department of Psychology, University of California, San Diego, La Jolla, California.

BACKGROUND Physiological responses to acute ethanol (EtOH) injection depend critically on the timing of their administration. Whether daily timing modulates effects of longer intoxication intervals characteristic of alcohol-dependent humans remains unknown. The present work examines time-of-day effects during EtOH exposure and withdrawal measured by locomotor activity (ActLoc ) and body temperature (Tb ) across multiple rounds of EtOH exposure/withdrawal. METHODS Two groups of C57BL/6J mice (n = 8 per group), implanted with radio-telemeters, were entrained to opposite light-dark periods (14:10 LD cycle) so that their rest/activity cycles were 12 hours apart. Under a 2-hour skeleton photoperiod animals were simultaneously exposed to 3 daily cycles of EtOH vapor inhalation (14 hours EtOH on) and withdrawal (10 hours EtOH off). During this time, air-only control groups (n = 4 per group) matched for entrainment were handled in a comparable manner. After the third cycle of EtOH vapor, the animals were left undisturbed for 11 days to recover. The 14-day protocol was repeated 3 additional times. RESULTS During intoxication, mice exposed to EtOH in the subjective night exhibited greater hypothermia and more overall disruptions in the Tb and ActLoc rhythms. Acute withdrawal induced hypothermia during the subjective night and hyperthermia during the subjective day. Animals in both phases demonstrated significant disruptions in ActLoc during withdrawal. ActLoc had little effect on Tb during EtOH exposure, but it significantly influenced Tb during acute withdrawal. CONCLUSIONS The physiological responses of both EtOH exposure and withdrawal differ as a function of time of day. These findings suggest that controlling for the circadian phase of exposure and/or withdrawal may mitigate the severity of symptomatic withdrawal.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D000435 Alcoholic Intoxication An acute brain syndrome which results from the excessive ingestion of ETHANOL or ALCOHOLIC BEVERAGES. Drunkenness,Intoxication, Alcoholic,Drunkennesses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013375 Substance Withdrawal Syndrome Physiological and psychological symptoms associated with withdrawal from the use of a drug after prolonged administration or habituation. The concept includes withdrawal from smoking or drinking, as well as withdrawal from an administered drug. Drug Withdrawal Symptoms,Withdrawal Symptoms,Drug Withdrawal Symptom,Substance Withdrawal Syndromes,Symptom, Drug Withdrawal,Symptom, Withdrawal,Symptoms, Drug Withdrawal,Symptoms, Withdrawal,Syndrome, Substance Withdrawal,Syndromes, Substance Withdrawal,Withdrawal Symptom,Withdrawal Symptom, Drug,Withdrawal Symptoms, Drug,Withdrawal Syndrome, Substance,Withdrawal Syndromes, Substance
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Amanda S Damaggio, and Michael R Gorman
March 2005, Physiology & behavior,
Amanda S Damaggio, and Michael R Gorman
January 2002, Chronobiology international,
Amanda S Damaggio, and Michael R Gorman
April 2009, Chronobiology international,
Amanda S Damaggio, and Michael R Gorman
October 1997, Archives of physiology and biochemistry,
Amanda S Damaggio, and Michael R Gorman
December 2007, Alcohol (Fayetteville, N.Y.),
Amanda S Damaggio, and Michael R Gorman
November 1998, Pharmacology, biochemistry, and behavior,
Amanda S Damaggio, and Michael R Gorman
May 2010, Alcohol (Fayetteville, N.Y.),
Amanda S Damaggio, and Michael R Gorman
June 2004, Physiology & behavior,
Copied contents to your clipboard!