Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. 2014

Yongtao Zhu, and Mark J McBride
Department of Biological Sciences, University of Wisconsin-Milwaukee, P. O. Box 413, Milwaukee, WI, 53201, USA.

Cytophaga hutchinsonii glides rapidly over surfaces and employs a novel collection of cell-associated proteins to digest crystalline cellulose. HimarEm1 transposon mutagenesis was used to isolate a mutant with an insertion in CHU_0170 (sprP) that was partially deficient in gliding motility and was unable to digest filter paper cellulose. SprP is similar in sequence to the Porphyromonas gingivalis type IX secretion system (T9SS) protein PorP that is involved in the secretion of gingipain protease virulence factors and to the Flavobacterium johnsoniae T9SS protein SprF that is needed to deliver components of the gliding motility machinery to the cell surface. We developed an efficient method to construct targeted nonpolar mutations in C. hutchinsonii and deleted sprP. The deletion mutant was defective in gliding and failed to digest cellulose, and complementation with sprP on a plasmid restored both abilities. Sequence analysis predicted that CHU_3105 is secreted by the T9SS, and deletion of sprP resulted in decreased levels of extracellular CHU_3105. The results suggest that SprP may function in protein secretion. The T9SS may be required for motility and cellulose utilization because cell surface proteins predicted to be involved in both processes have C-terminal domains that are thought to target them to this secretion system. The efficient genetic tools now available for C. hutchinsonii should allow a detailed analysis of the cellulolytic, gliding motility, and protein secretion machineries of this common but poorly understood bacterium.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D002482 Cellulose A polysaccharide with glucose units linked as in CELLOBIOSE. It is the chief constituent of plant fibers, cotton being the purest natural form of the substance. As a raw material, it forms the basis for many derivatives used in chromatography, ion exchange materials, explosives manufacturing, and pharmaceutical preparations. Alphacel,Avicel,Heweten,Polyanhydroglucuronic Acid,Rayophane,Sulfite Cellulose,alpha-Cellulose,Acid, Polyanhydroglucuronic,alpha Cellulose
D003589 Cytophaga A genus of gram-negative gliding bacteria found in SOIL; HUMUS; and FRESHWATER and marine habitats.
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D016254 Mutagenesis, Insertional Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation. Gene Insertion,Insertion Mutation,Insertional Activation,Insertional Mutagenesis,Linker-Insertion Mutagenesis,Mutagenesis, Cassette,Sequence Insertion,Viral Insertional Mutagenesis,Activation, Insertional,Activations, Insertional,Cassette Mutagenesis,Gene Insertions,Insertion Mutations,Insertion, Gene,Insertion, Sequence,Insertional Activations,Insertional Mutagenesis, Viral,Insertions, Gene,Insertions, Sequence,Linker Insertion Mutagenesis,Mutagenesis, Linker-Insertion,Mutagenesis, Viral Insertional,Mutation, Insertion,Mutations, Insertion,Sequence Insertions
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions
D058947 Bacterial Secretion Systems In GRAM NEGATIVE BACTERIA, multiprotein complexes that function to translocate pathogen protein effector molecules across the bacterial cell envelope, often directly into the host. These effectors are involved in producing surface structures for adhesion, bacterial motility, manipulation of host functions, modulation of host defense responses, and other functions involved in facilitating survival of the pathogen. Several of the systems have homologous components functioning similarly in GRAM POSITIVE BACTERIA. Bacterial Secretion System,Secretion System, Bacterial,Secretion Systems, Bacterial,System, Bacterial Secretion,Systems, Bacterial Secretion

Related Publications

Yongtao Zhu, and Mark J McBride
January 2019, Microbiology spectrum,
Yongtao Zhu, and Mark J McBride
December 2015, Current opinion in microbiology,
Yongtao Zhu, and Mark J McBride
June 2007, Applied and environmental microbiology,
Yongtao Zhu, and Mark J McBride
October 1985, Microbiological sciences,
Yongtao Zhu, and Mark J McBride
January 2016, Applied and environmental microbiology,
Copied contents to your clipboard!