Inhibition of excitatory synaptic transmission in hippocampal neurons by levetiracetam involves Zn²⁺-dependent GABA type A receptor-mediated presynaptic modulation. 2014

Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
Research Division for Clinical Pharmacology, Medical Corporation, Jyuryokai, Kumamoto Kinoh Hospital, Kumamoto, Japan (M.W., N.A.); Research Division for Life Science, Kumamoto Health Science University, Kumamoto, Japan (M.W., N.A.); Research Division of Neurophysiology, Kitamoto Hospital, Koshigaya, Japan (N.K., N.A); and Kogure Medical Clinic, Chouseikai Medical Corporation, Fukaya City, Saitama, Japan (K.K.).

Levetiracetam (LEV) is an antiepileptic drug with a unique but as yet not fully resolved mechanism of action. Therefore, by use of a simplified rat-isolated nerve-bouton preparation, we have investigated how LEV modulates glutamatergic transmission from mossy fiber terminals to hippocampal CA3 neurons. Action potential-evoked excitatory postsynaptic currents (eEPSCs) were recorded using a conventional whole-cell patch-clamp recording configuration in voltage-clamp mode. The antiepileptic drug phenytoin decreased glutamatergic eEPSCs in a concentration-dependent fashion by inhibiting voltage-dependent Na⁺ and Ca²⁺ channel currents. In contrast, LEV had no effect on eEPSCs or voltage-dependent Na⁺ or Ca²⁺ channel currents. Activation of presynaptic GABA type A (GABA(A)) receptors by muscimol induced presynaptic inhibition of eEPSCs, resulting from depolarization block. Low concentrations of Zn²⁺, which had no effect on eEPSCs, voltage-dependent Na⁺ or Ca²⁺ channel currents, or glutamate receptor-mediated whole cell currents, reduced the muscimol-induced presynaptic inhibition. LEV applied in the continuous presence of 1 µM muscimol and 1 µM Zn²⁺ reversed this Zn²⁺ modulation on eEPSCs. The antagonizing effect of LEV on Zn²⁺-induced presynaptic GABA(A) receptor inhibition was also observed with the Zn²⁺ chelators Ca-EDTA and RhodZin-3. Our results clearly show that LEV removes the Zn²⁺-induced suppression of GABA(A)-mediated presynaptic inhibition, resulting in a presynaptic decrease in glutamate-mediated excitatory transmission. Our results provide a novel mechanism by which LEV may inhibit neuronal activity.

UI MeSH Term Description Entries
D008297 Male Males
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D010889 Piracetam A compound suggested to be both a nootropic and a neuroprotective agent. 2-Pyrrolidone-N-Acetamide,Avigilen,Axonyl,Cerebroforte,Cerepar N,Ciclofalina,Cuxabrain,Dinagen,Gabacet,Geram,Memo-Puren,Nootrop,Nootropil,Nootropyl,Normabraïn,Piracebral,Piracetam AbZ,Piracetam-RPh,Piracetrop,Pirazetam,Pyracetam,Pyramem,Sinapsan,UCB-6215,Memo Puren,Piracetam RPh,UCB 6215,UCB6215
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005260 Female Females
D000077287 Levetiracetam A pyrrolidinone and acetamide derivative that is used primarily for the treatment of SEIZURES and some movement disorders, and as a nootropic agent. Etiracetam,Etiracetam, (R)-,Etiracetam, R-isomer,Etiracetam, S-isomer,Keppra,UCB 6474,UCB-6474,Ucb L059,Ucb L060,Ucb-L059,Ucb-L060,alpha-ethyl-2-oxo-1-Pyrrolidineacetamide,Etiracetam, R isomer,Etiracetam, S isomer,R-isomer Etiracetam,S-isomer Etiracetam,UCB6474,UcbL060,alpha ethyl 2 oxo 1 Pyrrolidineacetamide

Related Publications

Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
January 1997, Neuron,
Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
February 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
November 2001, Journal of neurophysiology,
Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
June 2020, Journal of neurophysiology,
Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
January 2003, The Journal of physiology,
Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
January 2011, Brain research bulletin,
Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
January 1994, Neuron,
Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
December 2003, Sheng li xue bao : [Acta physiologica Sinica],
Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
September 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Masahito Wakita, and Naoki Kotani, and Kyuya Kogure, and Norio Akaike
April 1999, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!