Mitochondrial DNA, RNA and protein synthesis in normal and hypothyroid developing rat liver. 1986

M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine

Mitochondrial DNA, RNA and protein synthesis in normal and hypothyroid rat liver between the ages of -3 and 21 days were followed. In normal rats DNA polymerase activity and protein synthesis behaved similarly, showing two peaks of activity, one at -3 and the other at 21 days of age. RNA polymerase activity did not change between days -3 and 14, whereas it increased by 21 days of age. Hypothyroidism delayed the developmental pattern of DNA polymerase activity, affected RNA polymerase activity only at 21 days, whereas it inhibited protein synthesis at birth and in the third week of life. The cytochrome aa3 content appeared to be affected by hypothyroidism at birth and at 21 days of age.

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine
February 1988, Molecular and cellular endocrinology,
M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine
February 1979, Neurochemical research,
M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine
July 1987, Pediatric research,
M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine
February 1977, Journal of cellular physiology,
M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine
November 1974, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine
January 1978, Psychoneuroendocrinology,
M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine
September 1971, Biochimica et biophysica acta,
M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine
January 1964, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine
May 2001, Molecular and cellular biochemistry,
M N Gadaleta, and G R Minervini, and M Renis, and C De Giorgi, and A Giovine
January 1977, Physiologie (Bucarest),
Copied contents to your clipboard!