Effect of replacing uridine 33 in yeast tRNAPhe on the reaction with ribosomes. 1986

D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson

We have determined several kinetic parameters for the reaction of poly(U)-programmed ribosomes with ternary complexes of elongation factor Tu, GTP, and yeast Phe-tRNA analogs with different bases substituted for uridine in position 33. These analogs test whether disruption of the hydrogen bonds normally formed by uridine 33 and steric crowding in the anticodon loop are detrimental to tRNA function on the ribosome. Single-turnover kinetic studies of the reaction of these ternary complexes with ribosomes show that these Phe-tRNA analogs decrease the apparent rate of GTP hydrolysis (kGTP) and the ratio of peptide formed to GTP hydrolyzed. Thus, the substitution of uridine 33 affects not only the selection of a ternary complex by the ribosome but also the selection of an aminoacyl-tRNA in the proofreading reaction. The effects become greater as first one, and then the other, H-bond is disrupted. Steric crowding in the anticodon loop is also important, but does not have as great an effect on the rate constants. An analysis of the elementary rate constants which comprise the rate constant, kGTP, demonstrates that the reduction in kGTP results from a decreased rate of ternary complex association with the ribosome (k1) and that there is little or no effect on the rate of GTP cleavage (k2). An analysis of the rate constants involved in proofreading shows that all the modified (tRNAs have increased rates of aminoacyl-tRNA rejection (k4) but that the rate of peptide bond formation (k3) is unaffected.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010444 Peptide Elongation Factor Tu A protein found in bacteria and eukaryotic mitochondria which delivers aminoacyl-tRNA's to the A site of the ribosome. The aminoacyl-tRNA is first bound to a complex of elongation factor Tu containing a molecule of bound GTP. The resulting complex is then bound to the 70S initiation complex. Simultaneously the GTP is hydrolyzed and a Tu-GDP complex is released from the 70S ribosome. The Tu-GTP complex is regenerated from the Tu-GDP complex by the Ts elongation factor and GTP. Elongation Factor Tu,EF-Tu,Eucaryotic Elongation Factor Tu,Protein Synthesis Elongation Factor Tu,eEF-Tu,EF Tu,Factor Tu, Elongation,eEF Tu
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006165 Guanylyl Imidodiphosphate A non-hydrolyzable analog of GTP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It binds tightly to G-protein in the presence of Mg2+. The nucleotide is a potent stimulator of ADENYLYL CYCLASES. GMP-PNP,GMP-P(NH)P,Gpp(NH)p,Guanosine 5'-(Beta,Gamma-Imido)Triphosphate,Guanyl-5'-Imidodiphosphate,P(NH)PPG,Guanyl 5' Imidodiphosphate,Imidodiphosphate, Guanylyl
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA

Related Publications

D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson
June 1982, Nucleic acids research,
D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson
December 1978, Biopolymers,
D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson
January 1980, European journal of biochemistry,
D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson
January 1977, European journal of biochemistry,
D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson
June 1983, Journal of molecular biology,
D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson
August 1979, Journal of molecular biology,
D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson
July 1973, European journal of biochemistry,
D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson
July 1977, Biochimica et biophysica acta,
D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson
November 1985, European journal of biochemistry,
D B Dix, and W L Wittenberg, and O C Uhlenbeck, and R C Thompson
January 1983, Nature,
Copied contents to your clipboard!