Take five - Type VII secretion systems of Mycobacteria. 2014

Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
VU University, Amsterdam, The Netherlands; VU University Medical Center, Amsterdam, The Netherlands. Electronic address: e.n.g.houben@vu.nl.

Mycobacteria use type VII secretion (T7S) systems to secrete proteins across their complex cell envelope. Pathogenic mycobacteria, such as the notorious pathogen Mycobacterium tuberculosis, have up to five of these secretion systems, named ESX-1 to ESX-5. At least three of these secretion systems are essential for mycobacterial virulence and/or viability. Elucidating T7S is therefore essential to understand the success of M. tuberculosis and other pathogenic mycobacteria as pathogens, and could be instrumental to identify novel targets for drug- and vaccine-development. Recently, significant progress has been achieved in the identification of T7S substrates and a general secretion motif. In addition, a start has been made with unraveling the mechanism of secretion and the structural analysis of the different subunits. This review summarizes these recent findings, which are incorporated in a working model of this complex machinery. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

UI MeSH Term Description Entries
D009169 Mycobacterium tuberculosis A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation. Mycobacterium tuberculosis H37Rv
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D014376 Tuberculosis Any of the infectious diseases of man and other animals caused by species of MYCOBACTERIUM TUBERCULOSIS. Koch's Disease,Kochs Disease,Mycobacterium tuberculosis Infection,Infection, Mycobacterium tuberculosis,Infections, Mycobacterium tuberculosis,Koch Disease,Mycobacterium tuberculosis Infections,Tuberculoses
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D058947 Bacterial Secretion Systems In GRAM NEGATIVE BACTERIA, multiprotein complexes that function to translocate pathogen protein effector molecules across the bacterial cell envelope, often directly into the host. These effectors are involved in producing surface structures for adhesion, bacterial motility, manipulation of host functions, modulation of host defense responses, and other functions involved in facilitating survival of the pathogen. Several of the systems have homologous components functioning similarly in GRAM POSITIVE BACTERIA. Bacterial Secretion System,Secretion System, Bacterial,Secretion Systems, Bacterial,System, Bacterial Secretion,Systems, Bacterial Secretion
D018832 Molecular Chaperones A family of cellular proteins that mediate the correct assembly or disassembly of polypeptides and their associated ligands. Although they take part in the assembly process, molecular chaperones are not components of the final structures. Chaperones, Molecular,Chaperone, Molecular,Molecular Chaperone
D021381 Protein Transport The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport. Cellular Protein Targeting,Gated Protein Transport,Protein Targeting, Cellular,Protein Translocation,Transmembrane Protein Transport,Vesicular Protein Transport,Protein Localization Processes, Cellular,Protein Sorting,Protein Trafficking,Protein Transport, Gated,Protein Transport, Transmembrane,Protein Transport, Vesicular,Traffickings, Protein

Related Publications

Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
November 2007, Nature reviews. Microbiology,
Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
July 2021, Microbiology (Reading, England),
Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
June 2015, Tuberculosis (Edinburgh, Scotland),
Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
March 2017, Genome biology and evolution,
Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
June 2023, Biological chemistry,
Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
July 2017, Memorias do Instituto Oswaldo Cruz,
Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
October 2009, PLoS pathogens,
Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
January 2017, Current topics in microbiology and immunology,
Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
August 2009, Trends in microbiology,
Edith N G Houben, and Konstantin V Korotkov, and Wilbert Bitter
October 2019, mBio,
Copied contents to your clipboard!