Altered excitability of goldfish Mauthner cell following axotomy. II. Localization and ionic basis. 1986

M J Titmus, and D S Faber

The ionic basis and spatial localizations of spike generation were examined in normal and axotomized goldfish Mauthner (M-) cells using intra- and extracellular recordings and pharmacological manipulation of ionic conductances, including localized iontophoretic drug applications. Tetrodotoxin (TTX) abolished both the initial segment (IS) spike in normal cells and the larger, two-component action potential in axotomized cells, whereas calcium (Ca2+) blockers did not. Thus, sodium (Na+) appears to be the major inward current carrier in both cases. A shoulder or plateau following the fast-rising Na+-dependent action potential was unmasked in both normal and axotomized M-cells by intracellular injections of tetraethylammonium (TEA), either alone or in conjunction with 4-aminopyridine (4-AP) or cesium (Cs+). This plateau potential was abolished by superfusing with saline containing the Ca2 antagonists, Co2+, Mn2+, or Cd2+. However, barium (Ba2+), which normally substitutes for Ca2+ and also blocks K+ conductances, did not produce a plateau spike, and no action potentials could be evoked in the presence of TTX. Simultaneous extra- and intracellular recordings from the soma and lateral dendrite revealed that both the full-sized axotomized spike and its individual labile components were always maximal at the soma. These data support the earlier suggestion that the axotomy-induced electrogenicity is primarily localized to that region. Iontophoretic application of TTX inside the axon cap, a distinctive neuropil surrounding the initial segment and the axon hillock and circumscribed by a glial border, and at various positions along the lateral dendrite confirmed the Na+-dependency of the action potentials recorded in normal and axotomized cells and further demonstrated that the soma generates the additional spike component in the latter. The results suggest that axotomy causes a persistent change in voltage-gated Na+ channel distribution in the M-cell, with Na+ channels appearing or becoming more numerous in the soma while becoming less concentrated in the initial segment-axon hillock. Possible related shifts in other voltage-dependent conductances are also discussed. Finally, these are the first detailed studies of the ionic basis of axotomy-induced electrogenicity in a vertebrate neuron, central or peripheral, and the similarity to the results obtained with invertebrate neurons suggests common mechanisms underlying the axon reaction.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

M J Titmus, and D S Faber
August 1983, Brain research,
M J Titmus, and D S Faber
February 1986, The Journal of comparative neurology,
M J Titmus, and D S Faber
January 1966, Progress in brain research,
M J Titmus, and D S Faber
March 1976, Brain research,
M J Titmus, and D S Faber
May 1997, Neuroscience letters,
M J Titmus, and D S Faber
October 1963, The Journal of cell biology,
M J Titmus, and D S Faber
March 1965, The Journal of general physiology,
Copied contents to your clipboard!