Non-cholinergic transmission in a sympathetic ganglion of the guinea-pig elicited by colon distension. 1986

D L Kreulen, and S Peters

Sensory transmission from the colon was studied using a preparation of inferior mesenteric ganglion (i.m.g.) attached to a segment of distal colon in guinea-pigs, in vitro. Electrical responses to colon distension were recorded intracellularly from neurones of the i.m.g. Distension of the distal colon up to an intraluminal pressure of 20 cmH2O caused an increase in resting asynchronous synaptic activity and a concomitant slow depolarization. The asynchronous synaptic activity, but not the slow depolarization, was abolished by cholinergic antagonists. Distension-induced non-cholinergic depolarizations were elicited in 44% of i.m.g. neurons sampled. For distensions of 1 min at 10-20 cmH2O, depolarizations reached a mean amplitude of 3.4 +/- 0.3 mV and lasted 108 +/- 7 s. Continuous distension resulted in a tachyphylaxis of the depolarization. Tetrodotoxin (3 X 10(-7) M) superfused over the i.m.g. reversibly abolished the distension-induced non-cholinergic depolarization. Distension-induced non-cholinergic depolarizations were accompanied by an increase in input resistance of 21%. Neuronal excitability also increased, as sub-threshold potentials produced by intracellular current injection reached threshold for firing action potentials during colon distension. The amplitude of non-cholinergic depolarizations increased with colonic intraluminal pressure between 2 and 20 cmH2O, although the slope of the mean amplitude-pressure curve decreased progressively at higher pressures. The amplitude of distension-induced non-cholinergic depolarizations increased as membrane potential was manually hyperpolarized to approximately -80 mV, whereupon further hyperpolarization resulted in a decrease in response amplitude. Non-cholinergic slow excitatory post-synaptic potentials (e.p.s.p.s) evoked by repetitive presynaptic nerve stimulation were reversibly attenuated by 19 +/- 8% during depolarizations produced by distension. Systemic administration of capsaicin (50-350 mg/kg) reduced the number of i.m.g. neurones exhibiting the non-cholinergic mechanosensory response; direct superfusion of capsaicin over the i.m.g. attenuated the response in some neurones but had no effect in others. These results demonstrate the existence of a non-cholinergic mechanosensory pathway from the colon to the i.m.g., and suggest that non-cholinergic transmission in the ganglion participates in mediating gastrointestinal reflexes. One transmitter utilized by the non-cholinergic mechanosensory pathway may be substance P.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

D L Kreulen, and S Peters
November 2004, American journal of physiology. Gastrointestinal and liver physiology,
D L Kreulen, and S Peters
September 1982, The Journal of physiology,
D L Kreulen, and S Peters
November 1994, The American journal of physiology,
D L Kreulen, and S Peters
October 1972, The Journal of physiology,
D L Kreulen, and S Peters
August 1987, The Journal of pharmacology and experimental therapeutics,
D L Kreulen, and S Peters
January 1954, Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie,
Copied contents to your clipboard!