Muscarinic response in rat lacrimal glands. 1986

A Marty, and M G Evans, and Y P Tan, and A Trautmann

A large variety of responses has been uncovered by recent investigations of conductance changes elicited by muscarinic agonists. In exocrine glands, the permeability to K+, Cl- and Na+ ions is increased, and internal Ca2+ serves as a second messenger. Patch-clamp analysis of the secreting cells has revealed three types of Ca2+-dependent channels, which are respectively selective for K+, for Cl-, and for monovalent cations. The channels differ in their sensitivity to the internal Ca2+ concentration, Cai. K+-selective channels are partially activated at rest, with Cai approx. 10 nmol l-1; Cl(-)-selective channels are activated between 100 nmol l-1 and 1 mumol l-1; activation of cationic channels requires micromolar Cai levels. Cell-attached recordings, performed either on isolated cells or on cell clusters, show an activation of all three channel types upon application of acetylcholine. In whole-cell recordings, mostly K+- and Cl(-)-selective channels are activated. The cell currents display slow oscillations linked to variations of Cai. Whole-cell currents rise after a delay of approx. 1 s, and decay with a time constant of approx. 0.7 s upon removal of acetylcholine. They do not depend on extracellular Ca2+. The recent demonstration that Ca2+-dependent currents can also be obtained when dialysing the cells with inositoltrisphosphate or with GTP gamma S, a non-hydrolysable analogue of guanosine triphosphate, opens promising leads to an analysis of intracellular events regulated by acetylcholine.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007765 Lacrimal Apparatus The tear-forming and tear-conducting system which includes the lacrimal glands, eyelid margins, conjunctival sac, and the tear drainage system. Lacrimal Gland,Nasolacrimal Apparatus,Conjunctival Sacs,Lacrimal Ducts,Lacrimal Punctum,Lateral Canthus,Medial Canthus,Apparatus, Lacrimal,Apparatus, Nasolacrimal,Canthus, Lateral,Canthus, Medial,Conjunctival Sac,Duct, Lacrimal,Gland, Lacrimal,Lacrimal Duct,Lacrimal Glands,Lacrimal Punctums,Punctum, Lacrimal,Sac, Conjunctival
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006243 Harderian Gland A sebaceous gland that, in some animals, acts as an accessory to the lacrimal gland. The harderian gland excretes fluid that facilitates movement of the third eyelid. Gland, Harderian
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Marty, and M G Evans, and Y P Tan, and A Trautmann
December 1989, The Journal of physiology,
A Marty, and M G Evans, and Y P Tan, and A Trautmann
November 1987, European journal of pharmacology,
A Marty, and M G Evans, and Y P Tan, and A Trautmann
January 1994, Advances in experimental medicine and biology,
A Marty, and M G Evans, and Y P Tan, and A Trautmann
June 1985, Cell biology international reports,
A Marty, and M G Evans, and Y P Tan, and A Trautmann
June 1982, Biochimica et biophysica acta,
A Marty, and M G Evans, and Y P Tan, and A Trautmann
February 1991, The Journal of physiology,
A Marty, and M G Evans, and Y P Tan, and A Trautmann
January 1998, Advances in experimental medicine and biology,
A Marty, and M G Evans, and Y P Tan, and A Trautmann
January 1964, International series of monographs on oral biology,
A Marty, and M G Evans, and Y P Tan, and A Trautmann
March 1966, Biulleten' eksperimental'noi biologii i meditsiny,
A Marty, and M G Evans, and Y P Tan, and A Trautmann
January 2001, Ryoikibetsu shokogun shirizu,
Copied contents to your clipboard!