Oxidation of (+)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by mouse keratinocytes: evidence for peroxyl radical- and monoxygenase-dependent metabolism. 1986

T Eling, and J Curtis, and J Battista, and L J Marnett

The role of prostaglandin H (PGH) synthase and peroxyl radicals as well as cytochrome P-450 in the metabolism of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP-7,8-diol) was examined in fresh skin keratinocytes isolated from hairless mice. Labeled (+)-BP-7,8-diol was oxidized after incubation with the keratinocytes to syn- and anti-diolepoxides in greater than a 4:1 ratio as estimated by h.p.l.c. analysis of the stable hydrolysis products. Formation of diolepoxides was dependent on cell number and the concentration of BP-7,8-diol. Incubation in the presence of the PGH synthase substrate, 20:4 or the inhibitor, indomethacin did not alter the total formation or the ratio of diolepoxides. However, the addition of butylated hydroxyanisole (1 micron) an inhibitor of peroxyl radical dependent-metabolism significantly inhibited diolepoxide formation. The time course for the formation of the anti-diolepoxide and lipid peroxidation, measured as malondialdehyde was determined. The results suggest an excellent correlation between peroxyl radical and diolepoxide formation. Pretreatment of mice with the cytochrome P-450 inducer, beta-naphthoflavone greatly altered the metabolism of (+)-BP-7,8-diol by keratinocytes. The major metabolite was the syn-diolepoxide with significant formation of two unknown metabolites. Pretreatment of mice with BP-7,8-diol did not induce aryl hydrocarbon hydroxylase activity but did increase the yield of syn-diolepoxide formed from labeled (+)-BP-7,8-diol by 1.5-fold. Our results suggest that peroxyl radical-mediated metabolism is primarily responsible for the oxidation of (+)-BP-7,8-diol in control animals while the cytochrome P-450 system is primarily responsible for oxidation in animals pretreated with inducers.

UI MeSH Term Description Entries
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008812 Mice, Hairless Mutant strains of mice that produce little or no hair. Hairless Mice,Mice, Inbred HRS,Mice, hr,Hairless Mouse,Mice, HRS,Mouse, HRS,Mouse, Inbred HRS,HRS Mice,HRS Mice, Inbred,HRS Mouse,HRS Mouse, Inbred,Inbred HRS Mice,Inbred HRS Mouse,Mouse, Hairless
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D002083 Butylated Hydroxyanisole Mixture of 2- and 3-tert-butyl-4-methoxyphenols that is used as an antioxidant in foods, cosmetics, and pharmaceuticals. Butylhydroxyanisole,(1,1-Dimethylethyl)-4-methoxyphenol,AMIF-72,BHA,Butyl Methoxyphenol,Embanox,Nipantiox 1-F,Tenox BHA,AMIF 72,AMIF72,Hydroxyanisole, Butylated,Methoxyphenol, Butyl,Nipantiox 1 F,Nipantiox 1F
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004101 Dihydroxydihydrobenzopyrenes Benzopyrenes saturated in any two adjacent positions and substituted with two hydroxyl groups in any position. The majority of these compounds have carcinogenic or mutagenic activity. Benzopyrene Dihydrodiols,Dihydrobenzopyrene Diols,Dihydrodiolbenzopyrenes,Dihydrodiols, Benzopyrene,Diols, Dihydrobenzopyrene
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).

Related Publications

T Eling, and J Curtis, and J Battista, and L J Marnett
May 1980, Biochemical and biophysical research communications,
T Eling, and J Curtis, and J Battista, and L J Marnett
January 1981, Chemico-biological interactions,
T Eling, and J Curtis, and J Battista, and L J Marnett
May 1978, Cancer research,
T Eling, and J Curtis, and J Battista, and L J Marnett
November 1989, Carcinogenesis,
T Eling, and J Curtis, and J Battista, and L J Marnett
December 1990, Carcinogenesis,
T Eling, and J Curtis, and J Battista, and L J Marnett
October 1976, Proceedings of the National Academy of Sciences of the United States of America,
T Eling, and J Curtis, and J Battista, and L J Marnett
January 1982, Drug metabolism reviews,
Copied contents to your clipboard!