Gonadotropins and estradiol stimulate immunoreactive insulin-like growth factor-I production by porcine granulosa cells in vitro. 1987

C J Hsu, and J M Hammond

Previous studies have established the ovarian granulosa cell as a site of insulin-like growth factor-I (IGF-I) secretion and action, suggesting an autocrine function for this peptide in the ovary. To better understand how this putative autocrine system is regulated and its interface with the classic ovarian trophic hormones FSH, LH, and estradiol (E2), we have studied the effects of these hormones on the secretion of immunoreactive IGF-I (iIGF-I) by cultured porcine granulosa cells. Immature granulosa cells were cultured under serum-free conditions which were optimized to allow maximal iIGF-I production and hormonal responsivity. Measurements of iIGF-I were made after minimizing the influence of IGF-binding proteins by either acid gel filtration or reverse phase chromatography. Since the two preparative procedures gave roughly comparable results, the more expeditious reverse phase procedure was chosen for most samples. Cycloheximide virtually eliminated measurable iIGF-I in culture, suggesting that the peptide measured was newly synthesized, and degradation of IGF-I by cultured granulosa cells was negligible. Consequently, the medium levels provided an accurate indication of cellular secretion over the collection period. Under optimal culture conditions, iIGF-I was readily measurable and responsive to treatment with ovarian trophic hormones. The iIGF-I levels in several experiments with these hormones were as follows: FSH treatment, 1.58 +/- 0.21 times the control value (n = 5 experiments); E2 treatment, 1.26 +/- 0.12 times the control value (n = 5); E2 plus FSH, 3.12 X 0.31 times the control value (n = 8); LH, 1.33 +/- 0.12 times the control value (n = 3); LH plus FSH, 1.78 +/- 0.2 times the control value (n = 1). To assess the role of cAMP in the mediation of gonadotropin effects in this system, granulosa cells were treated with a phosphodiesterase inhibitor (methylisobutylxanthine), which resulted in iIGF-I levels 1.61 +/- 0.7 times the control level. In the presence of FSH, a further stimulatory effect was demonstrated (3.76 +/- 0.29 times control). In addition, the cAMP analog 8-bromo-cAMP dramatically increased iIGF-I levels (6.3 +/- 0.72 times control). These data provide the first demonstration that gonadal iIGF-I secretion can be stimulated by the principal hormones involved in trophic regulation of the ovary. As with other gonadotropin-dependent functions of granulosa cells, this effect appears to be mediated by cAMP and enhanced by E2. This interface between circulating hormones and autocrine systems could provide an important mechanism to amplify the effects of gonadotropic hormones on a local level.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C J Hsu, and J M Hammond
August 1992, Molecular and cellular endocrinology,
Copied contents to your clipboard!