T lymphocyte recognition of insolubilized peptide antigen. 1986

D W Thomas, and M J Solvay

To study the role of antigen-presenting cells (APC) in T lymphocyte responses, the stimulation requirements of a murine T cell hybridoma specific for the peptide antigen human fibrinopeptide B (hFPB)/I-Ak was examined. The fine specificity of T cell recognition of this peptide was determined by using several hFPB homologs and analogs, which indicated that the intact 14-amino acid peptide must remain intact to preserve the antigenic determinant, and that the carboxyl terminal Arg14 was important for T cell responses. Of particular interest was the finding that APC-associated hFPB failed to stimulate the T cells, and that activation was only observed with soluble peptide or by brief hFPB treatment of the T cells and APC mixed together. In addition, hFPB covalently bound to agarose beads was able to cause T cell activation, provided that I-Ak+ APC were also present in the culture. A number of control experiments were performed that showed that hFPB was not released from the bead and that the antigenic peptide involved in T cell responses remained bound to the beads. These results indicate that the form of the hFPB peptide antigen recognized by this T cell can be provided separately from APC.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D005345 Fibrinopeptide B Two small peptide chains removed from the N-terminal segment of the beta chains of fibrinogen by the action of thrombin. Each peptide chain contains 20 amino acid residues. The removal of fibrinopeptides B is not required for coagulation. Fibrinopeptides B
D005802 Genes, MHC Class II Genetic loci in the vertebrate major histocompatibility complex that encode polymorphic products which control the immune response to specific antigens. The genes are found in the HLA-D region in humans and include H-2M, I-A, and I-E loci in mice. Class II Genes,Genes, Class II,Genes, HLA Class II,MHC Class II Genes,Class II Gene,Gene, Class II
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000938 Antigen-Presenting Cells A heterogeneous group of immunocompetent cells that mediate the cellular immune response by processing and presenting antigens to the T-cells. Traditional antigen-presenting cells include MACROPHAGES; DENDRITIC CELLS; LANGERHANS CELLS; and B-LYMPHOCYTES. FOLLICULAR DENDRITIC CELLS are not traditional antigen-presenting cells, but because they hold antigen on their cell surface in the form of IMMUNE COMPLEXES for B-cell recognition they are considered so by some authors. Accessory Cells, Immunologic,Antigen-Presenting Cell,Immunologic Accessory Cells,Accessory Cell, Immunologic,Cell, Immunologic Accessory,Cells, Immunologic Accessory,Immunologic Accessory Cell,Antigen Presenting Cell,Antigen Presenting Cells,Cell, Antigen-Presenting,Cells, Antigen-Presenting
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities

Related Publications

D W Thomas, and M J Solvay
January 1982, Advances in experimental medicine and biology,
D W Thomas, and M J Solvay
January 1987, Nature,
D W Thomas, and M J Solvay
June 1985, Transplantation,
D W Thomas, and M J Solvay
January 1976, Contemporary topics in immunobiology,
D W Thomas, and M J Solvay
February 1977, Journal of immunology (Baltimore, Md. : 1950),
D W Thomas, and M J Solvay
April 2007, Journal of immunotherapy (Hagerstown, Md. : 1997),
D W Thomas, and M J Solvay
January 1995, Methods in molecular biology (Clifton, N.J.),
D W Thomas, and M J Solvay
January 1989, Immunology series,
Copied contents to your clipboard!