T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. 1986

S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard

Chronic relapsing paralysis and demyelination within the central nervous system (CNS), features associated with the human disease multiple sclerosis (MS), develop in mice after injection of murine T-cell clones specific for the autoantigen myelin basic protein (MBP). We examined the fine specificity of three independently derived encephalitogenic T-cell clones using synthetic polypeptides derived from portions of the N-terminal sequence of MBP. These clones appear functionally identical; they all respond to an epitope in the N-terminal nine amino acid residues in association with the same class II (I-A) molecules of the major histocompatibility complex (MHC). Both the N-terminal acetyl moiety and the first residue (Ala) are necessary for recognition. Only N-terminal MBP peptides recognized by these clones were found to cause encephalomyelitis (EAE) in vivo. These results show that the N-terminal MBP-specific T lymphocytes that mediate autoimmune encephalomyelitis are a small population with a limited repertoire; they all recognise the same combination of MHC and target.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein
D004681 Encephalomyelitis, Autoimmune, Experimental An experimental animal model for central nervous system demyelinating disease. Inoculation with a white matter emulsion combined with FREUND'S ADJUVANT, myelin basic protein, or purified central myelin triggers a T cell-mediated immune response directed towards central myelin. The pathologic features are similar to MULTIPLE SCLEROSIS, including perivascular and periventricular foci of inflammation and demyelination. Subpial demyelination underlying meningeal infiltrations also occurs, which is also a feature of ENCEPHALOMYELITIS, ACUTE DISSEMINATED. Passive immunization with T-cells from an afflicted animal to a normal animal also induces this condition. (From Immunol Res 1998;17(1-2):217-27; Raine CS, Textbook of Neuropathology, 2nd ed, p604-5) Autoimmune Encephalomyelitis, Experimental,Encephalomyelitis, Allergic,Encephalomyelitis, Experimental Autoimmune,Allergic Encephalomyelitis,Allergic Encephalomyelitis, Experimental,Autoimmune Experimental Encephalomyelitis,Experimental Allergic Encephalomyelitis,Experimental Autoimmune Encephalomyelitis,Encephalomyelitis, Autoimmune Experimental,Encephalomyelitis, Experimental Allergic,Experimental Allergic Encephalomyelitides,Experimental Encephalomyelitis, Autoimmune
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D001324 Autoantigens Endogenous tissue constituents with the ability to interact with AUTOANTIBODIES and cause an immune response. Autoantigen,Autologous Antigen,Autologous Antigens,Self-Antigen,Self-Antigens,Antigen, Autologous,Antigens, Autologous,Self Antigen,Self Antigens
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard
January 1986, Pathology and immunopathology research,
S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard
July 1985, Journal of immunology (Baltimore, Md. : 1950),
S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard
September 1997, Proceedings of the National Academy of Sciences of the United States of America,
S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard
August 1998, Journal of neuroimmunology,
S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard
January 1996, Journal of neuroscience research,
S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard
July 1990, Nature,
S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard
December 1991, Journal of neuroimmunology,
S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard
October 1994, European journal of immunology,
S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard
July 1991, Journal of neuroimmunology,
S S Zamvil, and D J Mitchell, and A C Moore, and K Kitamura, and L Steinman, and J B Rothbard
August 1991, Immunology today,
Copied contents to your clipboard!