Role of intracellular Mg2+ in the activation of muscarinic K+ channel in cardiac atrial cell membrane. 1986

Y Kurachi, and T Nakajima, and T Sugimoto

Effects of intracellular Mg2+ in the activation of a muscarinic K+ channel were examined in single atrial cells, using patch-recording techniques. In "cell-attached" patch recordings, acetylcholine (ACh) or adenosine (Ado), present in the pipette, activated a specific population of K+ channels. In "inside-out" patches, openings of the K+ channel by ACh or Ado diminished and did not resume until Mg2+ was added to the perfusate which contained GTP or GTP-gamma S, a non-hydrolyzable GTP analogue. Channel openings caused by GTP faded by removing Mg2+, while GTP-gamma S-induced openings persisted steadily even when both Mg2+ and GTP-gamma S were removed. In contrast to the case of GTP-induced channel openings, the GTP-gamma S-induced openings were not inhibited by the A promoter of pertussis toxin with NAD. From these observations, we concluded: Intracellular Mg2+ is essential for GTP to activate the GTP-binding protein. Deactivation of the N protein may be caused by hydrolysis of GTP to GDP. This process may not require Mg2+. During the activation by GTP analogues, the N protein may be dissociated into its subunits.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003584 Cytological Techniques Methods used to study CELLS. Cytologic Technics,Cytological Technic,Cytological Technics,Cytological Technique,Technic, Cytological,Technics, Cytological,Technique, Cytological,Techniques, Cytological,Cytologic Technic,Technic, Cytologic,Technics, Cytologic
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

Y Kurachi, and T Nakajima, and T Sugimoto
April 1990, Pflugers Archiv : European journal of physiology,
Y Kurachi, and T Nakajima, and T Sugimoto
December 1995, The Journal of membrane biology,
Y Kurachi, and T Nakajima, and T Sugimoto
July 1989, The American journal of physiology,
Y Kurachi, and T Nakajima, and T Sugimoto
November 1997, The Journal of physiology,
Y Kurachi, and T Nakajima, and T Sugimoto
August 2002, American journal of physiology. Heart and circulatory physiology,
Y Kurachi, and T Nakajima, and T Sugimoto
April 2001, The Journal of biological chemistry,
Y Kurachi, and T Nakajima, and T Sugimoto
February 1986, Radiation research,
Y Kurachi, and T Nakajima, and T Sugimoto
January 1990, Society of General Physiologists series,
Copied contents to your clipboard!