Structural features of various proglumide-related cholecystokinin receptor antagonists. 1986

R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner

Thirteen proglumide derivatives that varied in the length of the di-n-alkyl group and in the substitutions on the benzoyl moiety were tested for their ability to interact with guinea pig pancreatic cholecystokinin (CCK) receptors. Each derivative was more potent than proglumide. There was a close correlation between their abilities to inhibit CCK-stimulated amylase release and to inhibit binding of 125I-CCK. For the di-n-alkyl derivatives the relative potency was n-pentyl greater than n-hexyl greater than n-butyl greater than n-propyl. For the benzoyl moiety, adding two electron-withdrawing groups increased potency more than adding a single electron-withdrawing group or adding electron-donating groups. The 3,4-dichloro-di-n-pentyl derivative of proglumide was 1,300 times more potent than proglumide, and its action was specific, competitive, and it functioned as a CCK receptor antagonist in rat, mouse, and guinea pig pancreas. For all proglumide derivatives there was a good correlation (r = 0.84, P less than 0.001) between their abilities to inhibit CCK-stimulated amylase release and that previously reported for their abilities to inhibit CCK-induced gallbladder contraction. However, certain proglumide derivatives had a much higher affinity for the pancreatic CCK receptor than for the CCK receptor mediating gallbladder contraction. For other proglumide derivatives the pattern was reversed. These results demonstrate that both the di-n-alkyl group and the substitution on the benzoyl moiety of proglumide are equally important determinants of affinity and that derivatives such as the di-n-pentyl 3,4-dichloro analogue can be produced that are 1,300 times more potent than proglumide.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011377 Proglumide A drug that exerts an inhibitory effect on gastric secretion and reduces gastrointestinal motility. It is used clinically in the drug therapy of gastrointestinal ulcers. Xylamide,Milid,Xilamide
D011949 Receptors, Cholecystokinin Cell surface proteins that bind cholecystokinin (CCK) with high affinity and trigger intracellular changes influencing the behavior of cells. Cholecystokinin receptors are activated by GASTRIN as well as by CCK-4; CCK-8; and CCK-33. Activation of these receptors evokes secretion of AMYLASE by pancreatic acinar cells, acid and PEPSIN by stomach mucosal cells, and contraction of the PYLORUS and GALLBLADDER. The role of the widespread CCK receptors in the central nervous system is not well understood. CCK Receptors,Caerulein Receptors,Cholecystokinin Octapeptide Receptors,Cholecystokinin Receptors,Pancreozymin Receptors,Receptors, CCK,Receptors, Caerulein,Receptors, Pancreozymin,Receptors, Sincalide,Sincalide Receptors,CCK Receptor,CCK-4 Receptors,CCK-8 Receptors,Cholecystokinin Receptor,Receptors, CCK-4,Receptors, CCK-8,Receptors, Cholecystokinin Octapeptide,CCK 4 Receptors,CCK 8 Receptors,Octapeptide Receptors, Cholecystokinin,Receptor, CCK,Receptor, Cholecystokinin,Receptors, CCK 4,Receptors, CCK 8
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000681 Amylases A group of amylolytic enzymes that cleave starch, glycogen, and related alpha-1,4-glucans. (Stedman, 25th ed) EC 3.2.1.-. Diastase,Amylase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner
August 1985, The American journal of physiology,
R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner
October 1981, Proceedings of the National Academy of Sciences of the United States of America,
R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner
May 1984, The American journal of physiology,
R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner
November 1988, The Journal of surgical research,
R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner
August 1993, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner
February 1982, The American journal of physiology,
R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner
January 1992, European journal of cancer (Oxford, England : 1990),
R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner
January 1995, European neurology,
R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner
March 1986, Naunyn-Schmiedeberg's archives of pharmacology,
R T Jensen, and Z C Zhou, and R B Murphy, and S W Jones, and I Setnikar, and L A Rovati, and J D Gardner
January 1985, Progress in clinical and biological research,
Copied contents to your clipboard!