A rare G1P[6] super-short human rotavirus strain carrying an H2 genotype on the genetic background of a porcine rotavirus. 2014

Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, and Global Center of Excellence, Nagasaki University, Nagasaki, Japan.

Rotavirus strains with a rearranged 11th genome segment may show super-short RNA electropherotypes. Examples from human strains were limited to seven strains, 69M, 57M, B37, Mc345, AU19, B4106 and BE2001, which have a variety of G and P genotypes. AU19 is a rare G1P[6] human rotavirus strain detected in a Japanese infant with severe acute gastroenteritis. This study was undertaken to better understand the origin of AU19 by determining the genotype constellation of AU19. Upon nearly-full genome sequencing, AU19 had a G1-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H2 genotype constellation. Possession of I5 and A8 genotypes is indicative of its porcine rotavirus origin, whereas possession of H2 genotype is indicative of its DS-1 like human rotavirus origin. At the phylogenetic lineage level for the genome segments that share the genotype between porcine and human rotaviruses, the VP1-4, VP7, NSP3-4 genes were most closely related to those of porcine rotaviruses, but the origin of the NSP2 gene was inconclusive. As to the NSP5 gene, the lineage containing AU19 and the other three super-short human strains, 69M, 57M and B37, carrying the H2 genotype (H2b) clustered with the lineage to which DS-1- like short strains belonged (H2a) albeit with an insignificant bootstrap support. Taken all these observations together, AU19 was likely to emerge as a consequence of interspecies transmission of a porcine rotavirus to a child coupled with the acquisition of a rare H2b genotype by genetic reassortment probably from a co-circulating human strain. The addition of the AU19 NSP5 sequence to much homogeneous H2b genotypes shared by previous super-short rotavirus strains made the genetic diversity of H2b genotypes as diverse as that of the H2a genotype, lending support to the hypothesis that super-short strains carrying H2b genotype have long been circulating unnoticed in the human population.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D005759 Gastroenteritis INFLAMMATION of any segment of the GASTROINTESTINAL TRACT from ESOPHAGUS to RECTUM. Causes of gastroenteritis are many including genetic, infection, HYPERSENSITIVITY, drug effects, and CANCER. Gastroenteritides
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
December 2009, Journal of medical microbiology,
Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
January 2009, Archives of virology,
Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
December 2010, Memorias do Instituto Oswaldo Cruz,
Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
August 2012, The Journal of general virology,
Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
January 2013, Journal of medical virology,
Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
May 2007, Virology,
Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
March 2001, Asian Pacific journal of allergy and immunology,
Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
January 2016, Journal of virology,
Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
July 2006, Archives of virology,
Loan Phuong Do, and Toyoko Nakagomi, and Osamu Nakagomi
April 2015, Veterinary microbiology,
Copied contents to your clipboard!