Voltage-dependent mechanisms for raising intracellular free calcium concentration: calcium channels. 1986

H Reuter

Single-channel recording by means of the patch-clamp technique provides a method for observing the kinetic properties of individual ion channels. Three distinct types of voltage-dependent calcium channels have so far been characterized: T-type channels are responsible for a rapidly inactivating, transient Ca2+ current; L-type channel openings produce a long-lasting Ca2+ current. N-type channels have the kinetic features of neither T- nor L-type channels. In addition to differences in their gating and conductance properties the three types of channels can also be distinguished by their different sensitivities to pharmacological intervention. The respective distribution of the various types of Ca2+ channels may vary from tissue to tissue. For example, more L-type Ca2+ channels may open during excitation in cardiac and smooth muscle cells than in nerve cells, where the other channel types may prevail. This would explain the different sensitivities of these tissues to dihydropyridines. In view of their functional significance it will be of considerable interest to explore in greater detail the respective densities and sensitivities to neurotransmitters and drugs of various Ca2+ channels in different tissues.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015124 8-Bromo Cyclic Adenosine Monophosphate A long-acting derivative of cyclic AMP. It is an activator of cyclic AMP-dependent protein kinase, but resistant to degradation by cyclic AMP phosphodiesterase. 8-Bromo-cAMP,8-Br Cyclic AMP,8-Bromo Cyclic AMP,8-Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8-Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8-Bromoadenosine 3',5'-Cyclic Monophosphate,Br Cycl AMP,8 Br Cyclic AMP,8 Bromo Cyclic AMP,8 Bromo Cyclic Adenosine Monophosphate,8 Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8 Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8 Bromo cAMP,8 Bromoadenosine 3',5' Cyclic Monophosphate,AMP, Br Cycl,Cyclic AMP, 8-Br,Cyclic AMP, 8-Bromo

Related Publications

H Reuter
June 2005, General physiology and biophysics,
H Reuter
September 2008, Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases,
H Reuter
August 1998, Journal of bioenergetics and biomembranes,
H Reuter
February 2023, Proceedings of the National Academy of Sciences of the United States of America,
H Reuter
February 2001, Current opinion in pharmacology,
H Reuter
December 1998, Frontiers in bioscience : a journal and virtual library,
H Reuter
October 1987, Biochemical pharmacology,
Copied contents to your clipboard!