Functional organization of crayfish abdominal ganglia: I. The flexor systems. 1986

E M Leise, and W M Hall, and B Mulloney

For insect ganglia, Altman (Advances in Physiological Science, Vol. 23. Neurobiology of Invertebrates. New York: Pergamon Press, pp. 537-555, '81) proposed that individual neuropils control different motor activities. A corollary of this hypothesis is that motor neurons involved in many behavioral functions should branch in more neuropils than those active in fewer behaviors. In crayfish, the abdominal fast-flexor muscles are active only during the generation of the powerstroke for tailflips, whereas the slow-flexor muscles are involved in the maintenance of body posture. The slow flexors are thus active in many of the crayfish's behavioral activities. To test the generality of Altman's idea, we filled groups of crayfish fast-flexor and slow-flexor motor neurons with cobalt chloride and described their shapes with respect to the ganglionic structures through which they pass. Individual fast flexors were also filled intracellularly with HRP. Ganglia containing well-filled neurons were osmicated, embedded in plastic, and sectioned. Unstained sections were examined by light microscopy and pertinent sections were photographed. We found that the paths of the larger neurites were invariant, that the dendritic domains of fast and slow motor neurons occupied distinctive sets of neuropils, and that dendrites of slow motor neurons branched in more ganglionic structures than did those of fast motor neurons. These results are consistent with Altman's hypothesis.

UI MeSH Term Description Entries
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005260 Female Females
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E M Leise, and W M Hall, and B Mulloney
April 2000, The Journal of comparative neurology,
E M Leise, and W M Hall, and B Mulloney
December 1994, The Journal of comparative neurology,
E M Leise, and W M Hall, and B Mulloney
June 1987, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
E M Leise, and W M Hall, and B Mulloney
January 1970, Annual review of physiology,
E M Leise, and W M Hall, and B Mulloney
January 1971, Journal de physiologie,
E M Leise, and W M Hall, and B Mulloney
October 1969, The Journal of experimental zoology,
E M Leise, and W M Hall, and B Mulloney
June 1967, The Journal of experimental biology,
E M Leise, and W M Hall, and B Mulloney
August 1985, Sheng li xue bao : [Acta physiologica Sinica],
E M Leise, and W M Hall, and B Mulloney
February 1979, Journal of biochemistry,
E M Leise, and W M Hall, and B Mulloney
May 1964, Comparative biochemistry and physiology,
Copied contents to your clipboard!