Membrane currents of internally perfused neurones of the snail, Lymnaea stagnalis, at low intracellular pH. 1986

L Byerly, and W J Moody

The effects of low intracellular pH (pHi) on the membrane currents of snail neurone somata were studied using the internal perfusion and ion-sensitive micro-electrode techniques. Recordings with pH-sensitive micro-electrodes made while the pH of the perfusion solution was changed between 7.3 and 6.3 indicated that only with high buffer concentrations (100 mM) could pHi be changed effectively. H+ was slower to exchange into the cytoplasm than an unbuffered ion such as K+. When pHi was decreased to 5.9, large outward H+ currents could be recorded at voltages positive to -30 mV. The time course and amplitude of these currents were such that they did not affect the measurement of the peak amplitude of the fast transient K+ current (A-current), but severely contaminated both Ca2+ and delayed K+ current measurements. Low pHi blocked the A-current. The titration curve was consistent with the binding of two H ions to a site with a pK of 6.05 to block the channel. Low pHi appeared to block the slow inactivation of the delayed outward current without greatly changing its peak amplitude. However, when correction was made for the increase of H+ current at low pHi, the effect of internal H+ was found to be a block of the delayed K+ current with no consistent effect on inactivation. The Ca2+ current was also decreased at low pHi, but we were unable to determine whether this was a direct effect of pHi or secondary to a rise in internal free [Ca2+]. If no correction was made for H+ currents, the block of the Ca2+ current appeared greater and more reversible than it actually was. We conclude that under certain conditions, such as low pHi, the H+ current is a significant fraction of the total outward current in snail neurones, and may also be in a variety of other cells. The H+ currents must be accounted for under such conditions in order to study accurately the properties of K+ and Ca2+ currents.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008195 Lymnaea A genus of dextrally coiled freshwater snails that includes some species of importance as intermediate hosts of parasitic flukes. Lymnea,Lymnaeas,Lymneas
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

L Byerly, and W J Moody
June 1989, The Journal of physiology,
L Byerly, and W J Moody
September 1998, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
L Byerly, and W J Moody
January 1997, Environmental pollution (Barking, Essex : 1987),
L Byerly, and W J Moody
March 1984, The Journal of physiology,
L Byerly, and W J Moody
January 1995, Acta biologica Hungarica,
L Byerly, and W J Moody
April 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
L Byerly, and W J Moody
December 2020, EvoDevo,
L Byerly, and W J Moody
January 2008, Eksperimental'naia i klinicheskaia farmakologiia,
Copied contents to your clipboard!