Role of the LEXE motif of protein-primed DNA polymerases in the interaction with the incoming nucleotide. 2014

Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
From the Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.

The LEXE motif, conserved in eukaryotic type DNA polymerases, is placed close to the polymerization active site. Previous studies suggested that the second Glu was involved in binding a third noncatalytic ion in bacteriophage RB69 DNA polymerase. In the protein-primed DNA polymerase subgroup, the LEXE motif lacks the first Glu in most cases, but it has a conserved Phe/Trp and a Gly preceding that position. To ascertain the role of those residues, we have analyzed the behavior of mutants at the corresponding ϕ29 DNA polymerase residues Gly-481, Trp-483, Ala-484, and Glu-486. We show that mutations at Gly-481 and Trp-483 hamper insertion of the incoming dNTP in the presence of Mg(2+) ions, a reaction highly improved when Mn(2+) was used as metal activator. These results, together with previous crystallographic resolution of ϕ29 DNA polymerase ternary complex, allow us to infer that Gly-481 and Trp-483 could form a pocket that orients Val-250 to interact with the dNTP. Mutants at Glu-486 are also defective in polymerization and, as mutants at Gly-481 and Trp-483, in the pyrophosphorolytic activity with Mg(2+). Recovery of both reactions with Mn(2+) supports a role for Glu-486 in the interaction with the pyrophosphate moiety of the dNTP.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D017103 Bacillus Phages Viruses whose host is Bacillus. Frequently encountered Bacillus phages include bacteriophage phi 29 and bacteriophage phi 105. Bacteriophage phi 105,Bacteriophage phi 29,Phage phi 105,Phage phi 29,Bacillus Bacteriophages,Bacillus Bacteriophage,Bacillus Phage,Bacteriophage, Bacillus,Bacteriophages, Bacillus
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies

Related Publications

Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
January 2004, Journal of molecular biology,
Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
April 2004, Journal of molecular biology,
Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
February 1999, Journal of molecular biology,
Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
August 2009, Analytical biochemistry,
Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
September 2022, Nucleic acids research,
Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
May 1988, Biochimie,
Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
October 1980, Proceedings of the National Academy of Sciences of the United States of America,
Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
January 1996, Acta biochimica Polonica,
Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
January 1989, Biochimica et biophysica acta,
Eugenia Santos, and José M Lázaro, and Patricia Pérez-Arnaiz, and Margarita Salas, and Miguel de Vega
August 2003, Journal of molecular biology,
Copied contents to your clipboard!