Bay K 8644 enhances slow inward and outward currents in voltage-clamped frog skeletal muscle fibres. 1986

C Cognard, and F Traoré, and D Potreau, and G Raymond

In isolated frog skeletal muscle fibre slow inward calcium current and slow outward potassium current were recorded by means of a double mannitol-gap device. Bay K 8644, the so-called Ca-channel activator, shifted the activation threshold of the slow inward calcium current (recorded in Cl-free, Ca-rich solution), towards negative potential by 15 mV. It increased the peak current amplitude in a dose-dependent manner (from 10(-11) to 10(-7) M; EC50 approximately equal to 10(-9) M). Apamin, the bee venom toxin which is known to specifically block a class of calcium-dependent potassium channels, failed to block the slow inward calcium current and slowed down its declining phase. This effect exhibited a potential dependence: the more the membrane was depolarized, the more the current decay was slowed down. Bay K 8644 (10(-7) M) transiently decreased the slow outward potassium current, which then progressively increased to stabilize at 135% of the control value. This effect seemed to be more pronounced at potentials above the reversal potential for inward ICa. The results suggest that the increase of the slow outward current is due to a direct action of Bay K 8644 on the slow K channel, rather than an indirect action via potentiation of slow inward calcium current. Moreover, results obtained with apamin indicated that the slow outward potassium current is unlikely to flow through Ca-channels.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011895 Rana ridibunda A species of the family Ranidae which occurs primarily in Europe and is used widely in biomedical research.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001030 Apamin A highly neurotoxic polypeptide from the venom of the honey bee (Apis mellifera). It consists of 18 amino acids with two disulfide bridges and causes hyperexcitability resulting in convulsions and respiratory paralysis.
D001498 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester A dihydropyridine derivative, which, in contrast to NIFEDIPINE, functions as a calcium channel agonist. The compound facilitates Ca2+ influx through partially activated voltage-dependent Ca2+ channels, thereby causing vasoconstrictor and positive inotropic effects. It is used primarily as a research tool. BK-8644,Bay R5417,Bay-K-8644,Bay-K-8644, (+)-Isomer,Bay-K-8644, (+-)-Isomer,Bay-K-8644, (-)-Isomer,Bay-K8644,Bay-R-5417,BK 8644,BK8644,Bay K 8644,Bay K8644,Bay R 5417,BayK8644,BayR5417,R5417, Bay
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

C Cognard, and F Traoré, and D Potreau, and G Raymond
November 1989, European journal of pharmacology,
C Cognard, and F Traoré, and D Potreau, and G Raymond
May 1977, Nature,
C Cognard, and F Traoré, and D Potreau, and G Raymond
October 1971, The Journal of physiology,
C Cognard, and F Traoré, and D Potreau, and G Raymond
January 1992, Biochimica et biophysica acta,
C Cognard, and F Traoré, and D Potreau, and G Raymond
February 1972, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
C Cognard, and F Traoré, and D Potreau, and G Raymond
November 1984, The Journal of physiology,
C Cognard, and F Traoré, and D Potreau, and G Raymond
December 2003, Journal of neurophysiology,
C Cognard, and F Traoré, and D Potreau, and G Raymond
February 1988, General physiology and biophysics,
C Cognard, and F Traoré, and D Potreau, and G Raymond
June 1998, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!