Imaging fluorescence fluctuation spectroscopy: new tools for quantitative bioimaging. 2014

Nirmalya Bag, and Thorsten Wohland
Departments of Biological Sciences and Chemistry, and NUS Center for Bio-Imaging Sciences (CBIS), National University of Singapore, 117557 Singapore; email: a0066359@nus.edu.sg , twohland@nus.edu.sg.

Fluorescence fluctuation spectroscopy (FFS) techniques provide information at the single-molecule level with excellent time resolution. Usually applied at a single spot in a sample, they have been recently extended into imaging formats, referred to as imaging FFS. They provide spatial information at the optical diffraction limit and temporal information in the microsecond to millisecond range. This review provides an overview of the different modalities in which imaging FFS techniques have been implemented and discusses present imaging FFS capabilities and limitations. A combination of imaging FFS and nanoscopy would allow one to record information with the detailed spatial information of nanoscopy, which is ∼20 nm and limited only by fluorophore size and labeling density, and the time resolution of imaging FFS, limited by the fluorescence lifetime. This combination would provide new insights into biological events by providing spatiotemporal resolution at unprecedented levels.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D061848 Optical Imaging The use of light interaction (scattering, absorption, and fluorescence) with biological tissue to obtain morphologically based information. It includes measuring inherent tissue optical properties such as scattering, absorption, and autofluorescence; or optical properties of exogenous targeted fluorescent molecular probes such as those used in optical MOLECULAR IMAGING, or nontargeted optical CONTRAST AGENTS. Fundus Autofluorescence Imaging,Autofluorescence Imaging,Fluorescence Imaging,Autofluorescence Imaging, Fundus,Fundus Autofluorescence Imagings,Imaging, Autofluorescence,Imaging, Fluorescence,Imaging, Fundus Autofluorescence,Imaging, Optical
D018613 Microscopy, Confocal A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible. Confocal Microscopy,Confocal Microscopy, Scanning Laser,Laser Microscopy,Laser Scanning Confocal Microscopy,Laser Scanning Microscopy,Microscopy, Confocal, Laser Scanning,Confocal Laser Scanning Microscopy,Confocal Microscopies,Laser Microscopies,Laser Scanning Microscopies,Microscopies, Confocal,Microscopies, Laser,Microscopies, Laser Scanning,Microscopy, Laser,Microscopy, Laser Scanning,Scanning Microscopies, Laser,Scanning Microscopy, Laser

Related Publications

Nirmalya Bag, and Thorsten Wohland
August 2016, Biophysical journal,
Nirmalya Bag, and Thorsten Wohland
October 1999, Methods (San Diego, Calif.),
Nirmalya Bag, and Thorsten Wohland
December 2010, Molecular biology of the cell,
Nirmalya Bag, and Thorsten Wohland
January 2019, Molecules (Basel, Switzerland),
Nirmalya Bag, and Thorsten Wohland
June 2004, Biophysical journal,
Nirmalya Bag, and Thorsten Wohland
January 2011, Methods in molecular biology (Clifton, N.J.),
Nirmalya Bag, and Thorsten Wohland
September 2009, Biophysical reviews,
Nirmalya Bag, and Thorsten Wohland
October 2005, Biophysical journal,
Nirmalya Bag, and Thorsten Wohland
September 2010, Current pharmaceutical biotechnology,
Copied contents to your clipboard!