Ethanol effects on voltage-dependent membrane conductances: comparative sensitivity of channel populations in Aplysia neurons. 1986

P Camacho-Nasi, and S N Treistman

The study of ethanol (EtOH) action is interesting because of its clinical relevance and for the insights it provides into structure-function relationships of excitable membranes. This paper describes the concentration dependencies of various parameters of four currents in Aplysia cells. ICa is the most sensitive of the currents studied. There was a significant reduction of ICa at concentrations of 50 mM EtOH. At low concentrations, the reduction of amplitude was the primary effect of ethanol, with the kinetics and voltage dependency of activation not affected. INa and IA were also affected, but at EtOH levels higher than those which altered ICa. The primary effect of EtOH on INa was a reduction in its amplitude, although the time to peak current flow was increased by EtOH. The effects of EtOH on IA were cell specific and, for the purposes of this paper, we examined the giant metacerebral cell (MCC). In MCC, the primary effect of EtOH on IA was an increase in the time course of inactivation. The time to peak IA was also increased by high concentrations of EtOH, but its amplitude was unaffected even at high concentrations. The delayed rectifier current, IK, was the most EtOH resistant of the currents examined. High EtOH concentrations augmented the amplitude of IK, although even at 600 mM concentrations, the percentage change was only 30%. Our results indicate that the calcium channel is very susceptible to the influence of ethanol and is a serious candidate to be the primary target of EtOH action in the nervous system. The differential sensitivity of voltage-dependent currents and individual components of a given current suggests further experiments to probe the relationship between membrane structure and channel function in excitable membranes.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias

Related Publications

P Camacho-Nasi, and S N Treistman
January 1989, Annals of the New York Academy of Sciences,
P Camacho-Nasi, and S N Treistman
November 1983, Brain research,
P Camacho-Nasi, and S N Treistman
February 1982, Brain research,
P Camacho-Nasi, and S N Treistman
September 1975, Comparative biochemistry and physiology. A, Comparative physiology,
P Camacho-Nasi, and S N Treistman
October 1991, Biochimica et biophysica acta,
P Camacho-Nasi, and S N Treistman
March 1974, Brain research,
P Camacho-Nasi, and S N Treistman
July 1998, The European journal of neuroscience,
P Camacho-Nasi, and S N Treistman
December 2013, Journal of computational neuroscience,
P Camacho-Nasi, and S N Treistman
December 2006, Journal of neurophysiology,
Copied contents to your clipboard!