An efficient method to isolate and culture mouse Kupffer cells. 2014

Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.

Kupffer cells (KCs) play an essential role in the physiological and pathological functions of the liver. Although the isolation methods of KCs have been well-described, most of them are sophisticated and time-consuming. In addition, these methods are mainly used for isolating the KCs of the human and rat. In this study, a three-step procedure was applied to isolate KCs in sufficient number and purity from mouse liver, including the techniques of enzymatic tissue treatment, gradient centrifugation, and selective adherence. F4/80 immunofluorescence and flow cytometry were used for cell identification. The combination method resulted in a satisfactorily high yield of 5-6×10(6) KCs per liver, over 92.0% positive for F4/80 and 98.5% viable cells. After 24h of culturing, the KCs showed typical macrophage morphologic features such as irregular shape, transparent cytoplasm and kidney-like nucleus. The phagocytic assay showed that the isolated cells exhibited strong phagocytosis activity. The KCs we isolated were functionally intact and exhibited a concentration dependent TNF-α production induced by LPS. The method we described is an effective method to isolate mouse KCs in high purity and yield, which consuming fewer collagenase and time without altering the functional capacity of the KCs.

UI MeSH Term Description Entries
D007728 Kupffer Cells Specialized phagocytic cells of the MONONUCLEAR PHAGOCYTE SYSTEM found on the luminal surface of the hepatic sinusoids. They filter bacteria and small foreign proteins out of the blood and dispose of worn out red blood cells. Kupffer Cell,Cell, Kupffer,Cells, Kupffer
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
September 2018, Journal of leukocyte biology,
Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
February 2011, Artificial organs,
Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
August 2005, Archives of dermatological research,
Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
January 2022, Methods in molecular biology (Clifton, N.J.),
Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
December 2022, STAR protocols,
Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
December 2023, Animals : an open access journal from MDPI,
Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
December 2019, Translational andrology and urology,
Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
January 2011, Methods in molecular biology (Clifton, N.J.),
Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
January 2010, Methods in molecular biology (Clifton, N.J.),
Pei-zhi Li, and Jin-zheng Li, and Min Li, and Jian-ping Gong, and Kun He
January 2009, Gene therapy,
Copied contents to your clipboard!