Hierarchical organization and structural flexibility of thylakoid membranes. 2014

Győző Garab
Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary. Electronic address: garab.gyozo@brc.mta.hu.

Chloroplast thylakoid membranes accommodate densely packed protein complexes in ordered, often semi-crystalline arrays and are assembled into highly organized multilamellar systems, an organization warranting a substantial degree of stability. At the same time, they exhibit remarkable structural flexibility, which appears to play important - yet not fully understood - roles in different short-term adaptation mechanisms in response to rapidly changing environmental conditions. In this review I will focus on dynamic features of the hierarchically organized photosynthetic machineries at different levels of structural complexity: (i) isolated light harvesting complexes, (ii) molecular macroassemblies and supercomplexes, (iii) thylakoid membranes and (iv) their multilamellar membrane systems. Special attention will be paid to the most abundant systems, the major light harvesting antenna complex, LHCII, and to grana. Two physical mechanisms, which are less frequently treated in the literature, will receive special attention: (i) thermo-optic mechanism -elementary structural changes elicited by ultrafast local heat transients due to the dissipation of photon energy, which operates both in isolated antenna assemblies and the native thylakoid membranes, regulates important enzymatic functions and appears to play role in light adaptation and photoprotection mechanisms; and (ii) the mechanism by which non-bilayer lipids and lipid phases play key role in the functioning of xanthophyll cycle de-epoxidases and are proposed to regulate the protein-to-lipid ratio in thylakoid membranes and contribute to membrane dynamics. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D045322 Photosynthetic Reaction Center Complex Proteins Protein complexes that take part in the process of PHOTOSYNTHESIS. They are located within the THYLAKOID MEMBRANES of plant CHLOROPLASTS and a variety of structures in more primitive organisms. There are two major complexes involved in the photosynthetic process called PHOTOSYSTEM I and PHOTOSYSTEM II. Photosynthetic Complex,Photosynthetic Reaction Center,Photosynthetic Reaction Center Complex Protein,Photosynthetic Complexes,Photosynthetic Reaction Centers,Center, Photosynthetic Reaction,Complex, Photosynthetic,Complexes, Photosynthetic,Reaction Center, Photosynthetic,Reaction Centers, Photosynthetic
D055550 Protein Stability The ability of a protein to retain its structural conformation or its activity when subjected to physical or chemical manipulations. Protein Stabilities,Stabilities, Protein,Stability, Protein
D060365 Chloroplast Proteins Proteins encoded by the CHLOROPLAST GENOME or proteins encoded by the nuclear genome that are imported to and resident in the CHOROPLASTS. Chloroplast Encoded Proteins,Chloroplast Genome-Encoded Proteins,Plastid Proteins,Chloroplast Genome Encoded Proteins,Encoded Proteins, Chloroplast,Genome-Encoded Proteins, Chloroplast,Proteins, Chloroplast,Proteins, Chloroplast Encoded,Proteins, Chloroplast Genome-Encoded,Proteins, Plastid
D020524 Thylakoids Membranous cisternae of the CHLOROPLAST containing photosynthetic pigments, reaction centers, and the electron-transport chain. Each thylakoid consists of a flattened sac of membrane enclosing a narrow intra-thylakoid space (Lackie and Dow, Dictionary of Cell Biology, 2nd ed). Individual thylakoids are interconnected and tend to stack to form aggregates called grana. They are found in cyanobacteria and all plants. Grana,Thylakoid Membrane,Membrane, Thylakoid,Membranes, Thylakoid,Thylakoid,Thylakoid Membranes

Related Publications

Győző Garab
October 2019, The Biochemical journal,
Győző Garab
January 2014, Scientific reports,
Győző Garab
February 2019, The Plant journal : for cell and molecular biology,
Győző Garab
December 1987, Journal of bioenergetics and biomembranes,
Győző Garab
October 1998, Journal of theoretical biology,
Győző Garab
August 1991, Journal of electron microscopy technique,
Győző Garab
January 2017, The Plant journal : for cell and molecular biology,
Copied contents to your clipboard!