Inhibition of catechol-O-methyltransferase by 6,7-dihydroxy-3,4-dihydroisoquinolines related to dopamine: demonstration using liquid chromatography and a novel substrate for O-methylation. 1987

B Y Cheng, and T C Origitano, and M A Collins

We report that 6,7-dihydroxy-3,4-dihydroisoquinolines related to dopamine are potent inhibitors of catechol-O-methyltransferase (COMT), but are not apparent substrates for the enzyme in vitro or in vivo. Three dihydroxy (catecholic) dihydroisoquinolines, including the 1-benzyl (DesDHP) and the 1-methyl (DSAL) analogs, were found to inhibit COMT activity in rat liver supernatant more effectively than the well-known inhibitor, tropolone. Inhibition of O-methylation was uncompetitive with substrate, and O-methylated products of the catecholic dihydroisoquinolines were undetectable. For these in vitro studies, a facile liquid chromatographic assay was developed utilizing as a site-specific substrate, 1-methyl-6,7-dihydroxy-tetrahydroisoquinoline-1-carboxylate (salsolinol-1-carboxylate). This catechol produces only one phenolic product isomer when incubated with liver supernatant and S-adenosylmethionine. Following central injection of DSAL in rats, inhibition of brain COMT in vivo was indicated by the reduced brain levels of homovanillic acid, but not of 3,4-dihydroxyphenylacetic acid. Furthermore, O-methylated DSAL metabolites could not be detected in brain by liquid or gas chromatography. We suggest that 6,7-dihydroxy-dihydroisoquinolines are "nonmethylatable" COMT inhibitors because they exist as quinoidal tautomers resembling pyridones or tropolones rather than as catechols. Quinoid formation is supported by the fluorescence and ultraviolet spectra for DSAL and its O-methyl derivatives. The experiments reveal a new class of COMT inhibitors that may be of pharmacological and mechanistic value. Additionally, 3,4-dihydroisoquinolines could arise endogenously via oxidation of the 1,2,3,4-tetrahydroisoquinolines which are ingested or produced from cellular catecholamine condensations. However, it is unlikely that dihydroisoquinoline (e.g., DSAL) concentrations necessary to inhibit COMT significantly would be attained via endogenous pathways.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D010208 Papaverine An alkaloid found in opium but not closely related to the other opium alkaloids in its structure or pharmacological actions. It is a direct-acting smooth muscle relaxant used in the treatment of impotence and as a vasodilator, especially for cerebral vasodilation. The mechanism of its pharmacological actions is not clear, but it apparently can inhibit phosphodiesterases and it may have direct actions on calcium channels. Cerespan,Papaverine Hydrochloride,Pavabid,Pavatym,Hydrochloride, Papaverine
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine

Related Publications

B Y Cheng, and T C Origitano, and M A Collins
January 1990, Journal of enzyme inhibition,
B Y Cheng, and T C Origitano, and M A Collins
April 1983, Life sciences,
B Y Cheng, and T C Origitano, and M A Collins
June 2017, Xenobiotica; the fate of foreign compounds in biological systems,
B Y Cheng, and T C Origitano, and M A Collins
May 1992, Journal of inorganic biochemistry,
B Y Cheng, and T C Origitano, and M A Collins
July 1970, The Journal of pharmacology and experimental therapeutics,
B Y Cheng, and T C Origitano, and M A Collins
June 1969, Japanese journal of pharmacology,
B Y Cheng, and T C Origitano, and M A Collins
September 1976, Biochemical pharmacology,
B Y Cheng, and T C Origitano, and M A Collins
May 2014, Toxicological sciences : an official journal of the Society of Toxicology,
B Y Cheng, and T C Origitano, and M A Collins
March 1966, Canadian journal of biochemistry,
Copied contents to your clipboard!