Studies on DNA methyltransferase and alteration of the enzyme activity by chemical carcinogens. 1986

R Cox

DNA in mammalian cells is enzymatically methylated at the 5-position of cytosine via S-adenosylmethionine and DNA methyltransferase. Several chemical carcinogens have been shown to inhibit this reaction, altering DNA methylation. We have been studying the mechanism by which carcinogens alter the methylation of DNA in order to better understand the cellular regulation of DNA methylase activity and to understand the role, if any, of DNA methylation in the carcinogenic process. We have utilized an in vitro assay for DNA methylase isolated from purified rat-liver nuclei. Ethionine, a liver carcinogen, given to rats 17 hr after partial hepatectomy inhibited the incorporation of [methyl-3H]-methionine into 5-methylcytosine residues of DNA. DNA isolated from these ethionine-treated rats was able to accept methyl groups from S-adenosylmethionine 8 times more than control DNA. It was further demonstrated that S-adenosylethionine competitively inhibited the DNA methylase resulting in hypomethylated DNA. N-Methyl-N-nitro-N-nitrosoguanidine reacted with the DNA methylase at the sulfhydryl sites inactivating the enzyme. Methylnitrosourea did not react directly with the methylase enzyme, but when reacted with DNA, the DNA methylase activity was inhibited by the carcinogen alkylated DNA. Sodium selenite also inhibited the enzyme non-competitively with a Ki of 6.7 microM. 5-Azacytidine prevented the 2 to 3 fold increase in DNA methylase seen 2 days following partial hepatectomy. All of these data with various carcinogens, altering DNA methylation by different mechanisms, support the hypothesis that DNA methylation plays a role in the initiation of carcinogenesis.

UI MeSH Term Description Entries
D008297 Male Males
D008770 Methylnitrosourea A nitrosourea compound with alkylating, carcinogenic, and mutagenic properties. Nitrosomethylurea,N-Methyl-N-nitrosourea,NSC-23909,N Methyl N nitrosourea,NSC 23909,NSC23909
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004248 DNA (Cytosine-5-)-Methyltransferases Enzymes that catalyzes the transfer of a methyl group from S-ADENOSYLMETHIONINE to the 5-position of CYTOSINE residues in DNA. DNA (Cytosine-5-)-Methyltransferase,DNA Cytosine-5-Methylase,DNA (Cytosine 5) Methyltransferase,Cytosine-5-Methylase, DNA,DNA Cytosine 5 Methylase
D005001 Ethionine 2-Amino-4-(ethylthio)butyric acid. An antimetabolite and methionine antagonist that interferes with amino acid incorporation into proteins and with cellular ATP utilization. It also produces liver neoplasms.
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations

Related Publications

R Cox
January 1983, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,
R Cox
January 1985, Pharmacology & therapeutics,
R Cox
January 1998, Advances in experimental medicine and biology,
R Cox
March 1984, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!