Flow cytometry and Feulgen cytophotometry in evaluation of effusions. 1987

J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss

Fifty-eight effusions (42 pleural and 16 ascitic fluids) from patients with and without cancer were analyzed by conventional cytology and the results compared with DNA patterns generated by flow cytometry of 10(4) nuclei and several modes of Feulgen cytophotometry. In 31 patients (24 without evidence of cancer and seven with history of cancer and cytologically negative fluids), the fluids were diploid by flow cytometry. One fluid with atypical cells from a lymphoma suspect was also diploid. Flow cytometry of 26 cytologically cancerous fluids disclosed aneuploid DNA patterns in 16 and diploid patterns in ten. Feulgen cytophotometry of 11 of these fluids (three aneuploid, eight diploid) was performed on nuclear preparations identical to those used in flow cytometry and on restrained smears used for visual analysis. The analysis was performed in two modes: as a study of 500 sequential nuclei in an automated system, mimicking flow cytometry, and visually selected large, presumably malignant nuclei. In nine of the 11 cases, the DNA content of visually selected cancer cells was aneuploid, even though this DNA pattern was not evident in the analysis of 500 sequential cells. In two cases, both diploid by flow cytometry, the Feulgen analysis confirmed the presence of cancer cells in the diploid range. In samples of 10(4) nuclei representing a mixed population of cells occurring in effusions, the presence of aneuploid cancer cells may not be disclosed by conventional flow cytometry. A larger sample of cells, a detailed analysis of DNA histograms, and perhaps sorting of select cells in the hypertetraploid range, may prove essential before flow cytometry can be accepted as a diagnostic tool in the laboratory in the assessment of effusions.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010996 Pleural Effusion Presence of fluid in the pleural cavity resulting from excessive transudation or exudation from the pleural surfaces. It is a sign of disease and not a diagnosis in itself. Effusion, Pleural,Effusions, Pleural,Pleural Effusions
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003592 Cytophotometry A method for the study of certain organic compounds within cells, in situ, by measuring the light intensities of the selectively stained areas of cytoplasm. The compounds studied and their locations in the cells are made to fluoresce and are observed under a microscope. Microfluorometry,Cytophotometries,Microfluorometries
D004171 Diploidy The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X. Diploid,Diploid Cell,Cell, Diploid,Cells, Diploid,Diploid Cells,Diploidies,Diploids
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000782 Aneuploidy The chromosomal constitution of cells which deviate from the normal by the addition or subtraction of CHROMOSOMES, chromosome pairs, or chromosome fragments. In a normally diploid cell (DIPLOIDY) the loss of a chromosome pair is termed nullisomy (symbol: 2N-2), the loss of a single chromosome is MONOSOMY (symbol: 2N-1), the addition of a chromosome pair is tetrasomy (symbol: 2N+2), the addition of a single chromosome is TRISOMY (symbol: 2N+1). Aneuploid,Aneuploid Cell,Aneuploid Cells,Aneuploidies,Aneuploids,Cell, Aneuploid,Cells, Aneuploid

Related Publications

J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss
April 1973, Microscopica acta,
J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss
September 1964, The Journal of cell biology,
J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss
January 1996, Respiration; international review of thoracic diseases,
J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss
January 2004, Methods in molecular biology (Clifton, N.J.),
J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss
March 1984, Analytical and quantitative cytology,
J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss
September 1983, Cancer,
J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss
January 1976, Histochemistry,
J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss
July 1976, Mikroskopie,
J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss
January 1981, Histochemistry,
J Schneller, and E Eppich, and E Greenebaum, and F Elequin, and A Sherman, and R Wersto, and L G Koss
April 1977, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Copied contents to your clipboard!