Interactions between xylene-linked carbamoyl bis-pyridinium mono-oximes and organophosphates inhibited-AChE: a kinetic study. 2014

Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India.

Reactivation of organophosphate (OP) inhibited acetylcholinesterase (AChE) by oximes is inadequate against various OP nerve agents known till date owing to their diverse structural features. As a consequence, in the past decades widespread research programs have been undertaken independently throughout the world to develop and identify more effective oxime reactivators. The efficacy of oxime reactivators is estimated through different in vitro and in vivo models using AChE from various sources against structurally different OPs. In the present study, reactivation kinetics of OP (paraoxon, DFP, sarin and VX) inhibited AChE by xylene linked carbamoyl bis-pyridinum mono-oximes have been described. It was found that the reactivation potency of tested oximes varied with the inhibitors used as 5l (4-carbamoyl-2' hydroxyiminomethyl-1-1'-(1,3-phenylenedimethyl)-bis-pyridinium dibromide) was found to be the most effective reactivator against paraoxon. In case of DFP, 5k (3-carbamoyl-2' hydroxyiminomethyl-1-1'-(1,3-phenylenedimethyl)-bis-pyridinium dibromide) showed best reactivation while in case of sarin 5e (3-carbamoyl-2' hydroxyiminomethyl-1-1'-(1,4-phenylenedimethyl)-bis-pyridinium dibromide) exhibited outstanding reactivation ability in comparison to standard oximes (2-PAM, obidoxime and TMB-4) as indicated by its highest value of second order reactivation rate constant (k(r2)) 3.26 mM⁻¹ min⁻¹. The enhanced reactivation efficacy of oximes may be attributed to the optimal length of xylene linker which facilitates appropriate positioning of carbamoyl function to the peripheral anionic site (PAS) and extending the oxime moiety to the active site of AChE.

UI MeSH Term Description Entries
D010091 Oximes Compounds that contain the radical R2C Aldoximes,Hydroxyimino Compounds,Ketoxime,Ketoximes,Oxime,Compounds, Hydroxyimino
D010755 Organophosphates Carbon-containing phosphoric acid derivatives. Included under this heading are compounds that have CARBON atoms bound to one or more OXYGEN atoms of the P( Organophosphate,Phosphates, Organic,Phosphoric Acid Esters,Organopyrophosphates,Acid Esters, Phosphoric,Esters, Phosphoric Acid,Organic Phosphates
D002619 Chemical Warfare Agents Chemicals that are used to cause the disturbance, disease, or death of humans during WARFARE. Agents, Chemical Warfare,Warfare Agents, Chemical,Agent, Chemical Warfare,Chemical Warfare Agent,Warfare Agent, Chemical
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D002801 Cholinesterase Reactivators Drugs used to reverse the inactivation of cholinesterase caused by organophosphates or sulfonates. They are an important component of therapy in agricultural, industrial, and military poisonings by organophosphates and sulfonates. Insecticides, Organophosphate, Antagonists,Insecticides, Organothiophosphate, Antagonists,Organophosphate Insecticide Antagonists,Organothiophosphate Insecticide Antagonists,Antagonists, Organophosphate Insecticide,Antagonists, Organothiophosphate Insecticide,Insecticide Antagonists, Organophosphate,Insecticide Antagonists, Organothiophosphate,Reactivators, Cholinesterase
D004593 Electrophorus A genus of fish, in the family GYMNOTIFORMES, capable of producing an electric shock that immobilizes fish and other prey. The species Electrophorus electricus is also known as the electric eel, though it is not a true eel. Eel, Electric,Electric Eel,Electrophorus electricus
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014992 Xylenes A family of isomeric, colorless aromatic hydrocarbon liquids, that contain the general formula C6H4(CH3)2. They are produced by the destructive distillation of coal or by the catalytic reforming of petroleum naphthenic fractions. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Dimethylbenzenes,Xylene

Related Publications

Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
February 2011, Toxicology in vitro : an international journal published in association with BIBRA,
Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
September 2011, European journal of medicinal chemistry,
Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
March 2009, European journal of medicinal chemistry,
Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
August 1986, Biochemical pharmacology,
Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
July 2015, Chemico-biological interactions,
Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
December 1992, The Journal of pharmacy and pharmacology,
Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
January 1986, Biochemical pharmacology,
Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
March 2009, European journal of medicinal chemistry,
Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
April 1983, Archives internationales de pharmacodynamie et de therapie,
Rahul Sharma, and Bhanushree Gupta, and J Acharya, and M P Kaushik, and Kallol K Ghosh
December 2013, Chemico-biological interactions,
Copied contents to your clipboard!