Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal MPP+ injection in rats. 2014

Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
Neurotherapeutics Lab, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, U.P., India.

Silymarin commonly known for its hepatoprotective effect is reported to show protection against 6-hydroxydopamine-induced neurotoxicity. Silibinin forms the major active constituent of silymarin. Therefore, the neuroprotective effect of silibinin (50, 100 and 200 mg/kg) was evaluated in the unilaterally injected 1-methyl-4-phenylpyridinium (MPP(+))-induced dopaminergic neurotoxicity in male rats. A battery of tests such as elevated plus maze (EPM), narrow beam walk, open field, bar catalepsy, grip strength, and foot print analysis was performed to evaluate the behavioral symptoms of striatal dopaminergic toxicity. Furthermore, the mechanism of action of silibinin was investigated by evaluating the mitochondrial complex enzyme activities, mitochondrial integrity and oxidative status. Striatal caspase-3 and NFκB were expressed to evaluate the effect of silibinin on apoptosis and inflammation respectively. Silibinin (100 and 200 mg/kg) protected against MPP(+)-induced dopamine depletion in striatum. Silibinin reversed MPP(+)-induced decrease in transfer latency indicating memory consolidation in the EPM test. Silibinin (100 and 200 mg/kg) attenuated MPP(+)-induced motor deficits, such as fine motor movements and gait. MPP(+)-induced mitochondrial dysfunction, loss of integrity and oxidative stress were attenuated by silibinin. Silibinin decreased striatal caspase-3 and NFκB expression indicating potential anti-apoptotic and anti-inflammatory effects respectively. Hence, silibinin exhibited neuroprotective effect in the MPP(+) induced striatal toxicity augmenting dopamine levels. The mechanism of action may be linked to maintenance of mitochondrial bioenergetics and integrity apart from anti-apoptotic and anti-inflammatory activities.

UI MeSH Term Description Entries
D008297 Male Males
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000077385 Silybin The major active component of silymarin flavonoids extracted from seeds of the MILK THISTLE, Silybum marianum; it is used in the treatment of HEPATITIS; LIVER CIRRHOSIS; and CHEMICAL AND DRUG INDUCED LIVER INJURY, and has antineoplastic activity; silybins A and B are diastereomers. 2,3-Dehydrosilybin,Alepa-forte,Ardeyhepan,Cefasilymarin,Durasilymarin,Hepa-Merz Sil,Hepa-loges,HepaBesch,Hepar-Pasc,Heparsyx,Heplant,Lagosa,Legalon Forte,Silibin,Silibinin,Silibinin A,Silibinin B,Silybin A,Silybin B,Silybinin,2,3 Dehydrosilybin,Alepa forte,Hepa Merz Sil,Hepa loges,Hepar Pasc
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D012838 Silymarin A mixture of flavonoids extracted from seeds of the MILK THISTLE, Silybum marianum. It consists primarily of silybin and its isomers, silicristin and silidianin. Silymarin displays antioxidant and membrane stabilizing activity. It protects various tissues and organs against chemical injury, and shows potential as an antihepatoxic agent. Carsil,Karsil,Legalon,Silimarin
D015655 1-Methyl-4-phenylpyridinium An active neurotoxic metabolite of 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE. The compound reduces dopamine levels, inhibits the biosynthesis of catecholamines, depletes cardiac norepinephrine and inactivates tyrosine hydroxylase. These and other toxic effects lead to cessation of oxidative phosphorylation, ATP depletion, and cell death. The compound, which is related to PARAQUAT, has also been used as an herbicide. Cyperquat,1-Methyl-4-phenylpyridine,1-Methyl-4-phenylpyridinium Chloride,1-Methyl-4-phenylpyridinium Ion,N-Methyl-4-phenylpyridine,N-Methyl-4-phenylpyridinium,1 Methyl 4 phenylpyridine,1 Methyl 4 phenylpyridinium,1 Methyl 4 phenylpyridinium Chloride,1 Methyl 4 phenylpyridinium Ion,N Methyl 4 phenylpyridine
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D053078 Membrane Potential, Mitochondrial The voltage difference, normally maintained at approximately -180mV, across the INNER MITOCHONDRIAL MEMBRANE, by a net movement of positive charge across the membrane. It is a major component of the PROTON MOTIVE FORCE in MITOCHONDRIA used to drive the synthesis of ATP. Delta Psi M,DeltaPsi M,DeltapsiM,Mitochondrial Membrane Potential,Mitochondrial Transmembrane Potential,M, DeltaPsi,Membrane Potentials, Mitochondrial,Mitochondrial Membrane Potentials,Mitochondrial Transmembrane Potentials,Transmembrane Potential, Mitochondrial,Transmembrane Potentials, Mitochondrial

Related Publications

Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
May 2014, Journal of medicinal food,
Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
January 1989, Brain research,
Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
April 1990, Experimental neurology,
Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
March 1987, Life sciences,
Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
November 2017, Molecular neurobiology,
Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
December 1989, Brain research,
Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
March 2008, Brain research,
Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
July 1982, Neuropharmacology,
Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
January 1988, Toxicon : official journal of the International Society on Toxinology,
Milind Geed, and Debapriya Garabadu, and Ausaf Ahmad, and Sairam Krishnamurthy
May 2015, Alcohol (Fayetteville, N.Y.),
Copied contents to your clipboard!