Identification and characterization of microRNAs in the crab-eating macaque (Macaca fascicularis) using transcriptome analysis. 2014

Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, China.

MicroRNAs (miRNAs), with an average length between 16 nt and 26 nt, are small non-coding RNAs that can repress gene expression on the post-transcriptional level. Macaca fascicularis (M. fascicularis), one of the most important nonhuman primate animal models, is widely used in basic and applied preclinical research, especially in studies that involve neuroscience and disease. However, due to the lack of a complete genome sequence, the miRNAs in M. fascicularis have not been completely characterized. In this study, 86 putative M. fascicularis miRNAs were identified using a strategy of our design. The expression of some of these miRNAs in the tissue was confirmed by qRT-PCR. The function and pathway of their targeted genes were analyzed to reveal the potential relevance of miRNA regulation on diseases and physiological processes. The current study provides insight into potential miRNAs and forms a useful knowledge base for the future understanding of the function of miRNAs in M. fascicularis.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D059467 Transcriptome The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells. Transcriptomes,Gene Expression Profiles,Gene Expression Signatures,Transcriptome Profiles,Expression Profile, Gene,Expression Profiles, Gene,Expression Signature, Gene,Expression Signatures, Gene,Gene Expression Profile,Gene Expression Signature,Profile, Gene Expression,Profile, Transcriptome,Profiles, Gene Expression,Profiles, Transcriptome,Signature, Gene Expression,Signatures, Gene Expression,Transcriptome Profile
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
January 1971, Folia primatologica; international journal of primatology,
Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
October 1988, The Anatomical record,
Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
May 2012, BMC genomics,
Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
December 1985, Laboratory animal science,
Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
February 1980, Laboratory animal science,
Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
September 2017, Gene,
Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
February 2010, The Journal of veterinary medical science,
Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
January 1988, Journal of molecular evolution,
Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
July 2018, American journal of physical anthropology,
Hao Yang, and Rui Zhang, and Ying Jing, and Lin Zhu, and Wen Zhang, and Chang Liu, and Jin Wang, and Jie Yang, and Junfeng Zhang, and Ke Zen, and Chenyu Zhang, and Donghai Li
January 1972, International journal of fertility,
Copied contents to your clipboard!