5S rRNA genes from Aspergillus nidulans are not transcribed in Saccharomyces cerevisiae. 1986

E Bartnik, and J Empel, and I Kern, and M Zagrodzka

Several different 5S rRNA genes from Aspergillus nidulans cloned in an Escherichia coli--Saccharomyces cerevisiae shuttle vector were introduced into S. cerevisiae cells by transformation. The A. nidulans 5S rRNA genes were not transcribed in S. cerevisiae.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D001233 Aspergillus nidulans A species of imperfect fungi from which the antibiotic nidulin is obtained. Its teleomorph is Emericella nidulans. Aspergillus nidulellus,Emericella nidulans
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

E Bartnik, and J Empel, and I Kern, and M Zagrodzka
January 1987, Current genetics,
E Bartnik, and J Empel, and I Kern, and M Zagrodzka
January 1994, Acta biochimica Polonica,
E Bartnik, and J Empel, and I Kern, and M Zagrodzka
December 2001, Molecular and cellular biology,
E Bartnik, and J Empel, and I Kern, and M Zagrodzka
January 1984, Acta microbiologica Polonica,
E Bartnik, and J Empel, and I Kern, and M Zagrodzka
June 1996, Applied and environmental microbiology,
E Bartnik, and J Empel, and I Kern, and M Zagrodzka
October 2005, Molecular genetics and genomics : MGG,
E Bartnik, and J Empel, and I Kern, and M Zagrodzka
November 1992, Molecular and cellular biochemistry,
E Bartnik, and J Empel, and I Kern, and M Zagrodzka
April 1997, Microbiology (Reading, England),
E Bartnik, and J Empel, and I Kern, and M Zagrodzka
November 1992, The Journal of biological chemistry,
Copied contents to your clipboard!