Heterodimerization of mouse orexin type 2 receptor variants and the effects on signal transduction. 2014

Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva

Orexin-A and Orexin-B play important roles in many physiological processes in which Orexins orchestrate diverse downstream effects via two G-protein coupled receptors: Orexin1R and Orexin2R. Two alternative C-terminus splice variants of the mouse Orexin receptors mOX2alphaR and mOX2betaR have recently been identified. This study explored the possibility of heterodimerization between mOX2alphaR and mOX2betaR, and investigated novel signal transduction characteristics after stimulation. The dimerization of mOX2alphaR and mOX2betaR was confirmed by BRET and co-immunoprecipitation assays. Meanwhile, in HEK293 cells, co-expression of mOX2alphaR and mOX2betaR resulted in a strengthened increase in activation of ERK1/2, with maximal activation at 5 min and 100 nM. Furthermore, heterodimerization also elicits stronger intracellular Ca2+ elevation after Orexin(s) stimulation, followed by a slower decline in intracellular Ca2+ to a steady endpoint Protein Kinase C Inhibitor significantly inhibited these downstream effects. In addition, the cAMP response element reporter activities were significantly reduced, whereas the serum response element luciferase and the T-lymphocyte activation of nuclear factor-responsive element reporter activity were significantly up-regulated after Orexin(s) stimulation. Besides, Orexin-A/-B induced a significantly higher rate of HEK293 cell proliferation in cells co-expressing mOX2alphaR/mOX2betaR compared to the control group. Taken together, we provide conclusive evidence that mOX2alphaR can form a functional heterodimer with mOX2betaR and this leads to increased PKC and decreased protein kinase A activity by ERK signal pathway leading to a significant increase in cell proliferation. The nature of this signaling pathway has significant implications for the role of Orexin in the regulation of physiological processes including the homeostasis of feeding.

UI MeSH Term Description Entries
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000068797 Orexins Neuropeptide hormones that play a role in regulating a variety of behavioral and physiological processes in response to motivational stimuli. Hypocretin,Orexin,Hypocretin-1,Hypocretin-2,Hypocretins,Orexin-A,Orexin-B,Hypocretin 1,Hypocretin 2,Orexin A,Orexin B
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D047908 Intracellular Signaling Peptides and Proteins Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors. Intracellular Signaling Peptides,Intracellular Signaling Proteins,Peptides, Intracellular Signaling,Proteins, Intracellular Signaling,Signaling Peptides, Intracellular,Signaling Proteins, Intracellular

Related Publications

Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva
August 2006, Brain research,
Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva
July 1993, Molecular and cellular biology,
Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva
August 2014, Respiratory physiology & neurobiology,
Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva
December 2014, British journal of pharmacology,
Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva
February 2016, Cellular signalling,
Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva
July 2008, British journal of pharmacology,
Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva
September 1993, Nature,
Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva
February 2019, Cellular signalling,
Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva
August 2006, Hypertension (Dallas, Tex. : 1979),
Chunmei Wang, and Yanyou Pan, and Rumin Zhang, and Bo Bai, and Jing Chen, and Harpal S Randeva
September 2002, Peptides,
Copied contents to your clipboard!