Structure of a biologically active neurotensin-related peptide obtained from pepsin-treated albumin(s). 1987

R E Carraway, and S P Mitra, and D E Cochrane

Using a radioimmunoassay toward the COOH-terminal region of neurotensin, an immunoreactive and biologically active neurotensin-related peptide (NRP) has been isolated from pepsin-treated fractions of bovine, canine, human, and rat plasma. Bovine NRP was identified as H-Ile-Ala-Arg-Arg-His-Pro-Tyr-Phe-Leu-OH, which is similar in structure to both neurotensin and angiotensin I. Canine and human NRP also had the above amino acid composition, whereas that obtained from rat plasma had valine substituted for isoleucine. At their concentrations in pepsin-treated plasmas (2-6 microM) rat, human and canine NRP were shown to increase vascular permeability when injected intradermally into rats and to release histamine from rat mast cells in vitro. The pure peptides also cross-reacted very effectively at nanomolar concentrations in a radioreceptor assay for neurotensin. The protein(s) which liberated NRP upon pepsin treatment were purified about 7-fold and shown to behave like albumin during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing, and high pressure liquid chromatography on muBondapak C4. In addition, the purified preparations were found to react with anti-albumin antisera during immunodiffusion. Although the amino acid sequence of NRP was not found in albumin, a partial sequence homology was noted for NRP and various segments of bovine albumin. Using V8 protease, glutamyl residues were shown to lie within 3-4 amino acids of each end of NRP, as also occurs for the related segments in albumin. These results suggest that a subset of albumin-related protein(s) could serve as precursor(s) to biologically active neurotensin-related peptide(s).

UI MeSH Term Description Entries
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D009496 Neurotensin A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
D010434 Pepsin A Formed from pig pepsinogen by cleavage of one peptide bond. The enzyme is a single polypeptide chain and is inhibited by methyl 2-diaazoacetamidohexanoate. It cleaves peptides preferentially at the carbonyl linkages of phenylalanine or leucine and acts as the principal digestive enzyme of gastric juice. Pepsin,Pepsin 1,Pepsin 3
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006636 Histamine Release The secretion of histamine from mast cell and basophil granules by exocytosis. This can be initiated by a number of factors, all of which involve binding of IgE, cross-linked by antigen, to the mast cell or basophil's Fc receptors. Once released, histamine binds to a number of different target cell receptors and exerts a wide variety of effects. Histamine Liberation,Histamine Liberations,Histamine Releases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R E Carraway, and S P Mitra, and D E Cochrane
November 1978, Life sciences,
R E Carraway, and S P Mitra, and D E Cochrane
May 1986, Biochemical and biophysical research communications,
R E Carraway, and S P Mitra, and D E Cochrane
February 1989, Japanese journal of pharmacology,
R E Carraway, and S P Mitra, and D E Cochrane
June 1971, The Biochemical journal,
R E Carraway, and S P Mitra, and D E Cochrane
January 1996, Advances in experimental medicine and biology,
R E Carraway, and S P Mitra, and D E Cochrane
January 1981, Annals of the New York Academy of Sciences,
R E Carraway, and S P Mitra, and D E Cochrane
December 2002, Current drug targets. CNS and neurological disorders,
R E Carraway, and S P Mitra, and D E Cochrane
January 1997, Peptides,
R E Carraway, and S P Mitra, and D E Cochrane
November 1983, FEBS letters,
R E Carraway, and S P Mitra, and D E Cochrane
January 1967, Il Friuli medico,
Copied contents to your clipboard!