Nuclear matrix-bound DNA primase. Elucidation of an RNA priming system in nuclear matrix isolated from regenerating rat liver. 1987

R A Tubo, and R Berezney

Recent findings in purified systems demonstrate the universality of DNA polymerase-primase complexes which may function in the priming and continuation of eucaryotic DNA replication. In this report we characterize an in vitro, nuclear matrix-associated, priming and continuation system that can utilize either endogenous matrix-bound DNA or exogenous single-stranded DNA as template. 30-40% of total nuclear DNA primase activity was recovered in association with the isolated nuclear matrix fraction from regenerating rat liver. Matrix-bound primase catalyzed the alpha-amanitin, actinomycin D-resistant synthesis of oligonucleotide chains of 8-50 nucleotides on the endogenous template. At least a portion of the RNA primers were continued by DNA polymerase alpha with deoxynucleoside triphosphate incorporation up to 300-600 nucleotides. Nearest neighbor analysis revealed ribodeoxynucleotide covalent linkages in these RNA-DNA chains. The matrix-bound primase preferred single-stranded fd DNA as exogenous template over synthetic homopolymers and was strictly dependent on the presence of ribonucleoside triphosphates. Appropriate subfractionation revealed that the matrix-bound primase activity is exclusively localized in the nuclear matrix interior. The ability of primase and DNA polymerase to synthesize covalently linked RNA-DNA products demonstrates the potentially useful role of the nuclear matrix in vitro system for elucidating the organizational and functional properties of the eucaryotic replication apparatus in the cell nucleus.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008115 Liver Regeneration Repair or renewal of hepatic tissue. Liver Regenerations,Regeneration, Liver,Regenerations, Liver
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012265 Ribonucleotides Nucleotides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed) Ribonucleoside Phosphates,Ribonucleotide,Phosphates, Ribonucleoside
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012316 RNA Nucleotidyltransferases Enzymes that catalyze the template-directed incorporation of ribonucleotides into an RNA chain. EC 2.7.7.-. Nucleotidyltransferases, RNA
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

R A Tubo, and R Berezney
September 1978, Biokhimiia (Moscow, Russia),
R A Tubo, and R Berezney
March 1977, Biochemical and biophysical research communications,
R A Tubo, and R Berezney
January 1973, Molecular biology,
R A Tubo, and R Berezney
April 1969, Biochimica et biophysica acta,
R A Tubo, and R Berezney
September 1988, Biokhimiia (Moscow, Russia),
R A Tubo, and R Berezney
November 1990, Biochemistry international,
R A Tubo, and R Berezney
March 1973, Biochemical and biophysical research communications,
R A Tubo, and R Berezney
January 1977, Doklady Akademii nauk SSSR,
Copied contents to your clipboard!