The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes. 1987

K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman

Actin, keratin, vinculin and desmoplakin organization were studied in primary mouse keratinocytes before and during Ca2+-induced cell contact formation. Double-label fluorescence shows that in cells cultured in low Ca2+ medium, keratin-containing intermediate filament bundles (IFB) and desmoplakin-containing spots are both concentrated towards the cell center in a region bounded by a series of concentric microfilament bundles (MFB). Within 5-30 min after raising Ca2+ levels, a discontinuous actin/vinculin-rich, submembranous zone of fluorescence appears at cell-cell interfaces. This zone is usually associated with short, perpendicular MFB, which become wider and longer with time. Later, IFB and the desmoplakin spots are seen aligned along the perpendicular MFB as they become redistributed to cell-cell interfaces where desmosomes form. Ultrastructural analysis confirms that before the Ca2+ switch, IFB and desmosomal components are found predominantly within the perimeter defined by the outermost of the concentric MFB. Individual IF often splay out, becoming interwoven into these MFB in the region of cell-substrate contact. In the first 30 min after the Ca2+ switch, areas of submembranous dense material (identified as adherens junctions), which are associated with the perpendicular MFB, can be seen at newly formed cell-cell contact sites. By 1-2 h, IFB-desmosomal component complexes are aligned with the perpendicular MFB as the complexes become redistributed to cell-cell interfaces. Cytochalasin D treatment causes the redistribution of actin into numerous patches; keratin-containing IFB undergo a concomitant redistribution, forming foci that coincide with the actin-containing aggregates. These results are consistent with an IF-MF association before and during desmosome formation in the primary mouse epidermal keratinocyte culture system, and with the temporal and spatial coordination of desmosome and adherens junction formation.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices

Related Publications

K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman
January 1980, Differentiation; research in biological diversity,
K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman
January 1999, International review of cytology,
K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman
June 1998, The Journal of cell biology,
K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman
January 2004, Handbook of experimental pharmacology,
K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman
February 1997, The Journal of cell biology,
K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman
January 1986, Cell motility and the cytoskeleton,
K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman
April 2015, Proceedings of the National Academy of Sciences of the United States of America,
K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman
December 2007, Journal of dermatological science,
K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman
January 1993, Cell motility and the cytoskeleton,
K J Green, and B Geiger, and J C Jones, and J C Talian, and R D Goldman
December 1991, The Journal of investigative dermatology,
Copied contents to your clipboard!