Secretion of glycoprotein hormone alpha-subunit by pituitary tumors. 1987

M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima

Serum glycoprotein hormone alpha-subunit levels were determined in 165 patients with pituitary adenomas. Elevated serum alpha-subunit levels were found in 17 patients (acromegaly, 5 of 58; prolactinoma, 6 of 56; nonfunctioning adenoma, 5 of 32; and ACTH-producing adenoma, 1 of 19), most of whom had normal serum TSH and gonadotropin levels. When TRH (0.5 mg) was injected iv in the 6 prolactinoma patients with elevated serum alpha-subunit levels, serum PRL and alpha-subunit levels increased in only 1 patient. Four acromegalic patients with high serum alpha-subunit levels received TRH; serum GH and alpha-subunit increased in 1 patient and did not change in 2, and only serum GH increased in the remaining patient. Oral administration of bromocriptine (5 mg), on the other hand, consistently decreased serum alpha-subunit and PRL levels in 2 patients with prolactinoma and alpha-subunit and GH levels in 1 acromegalic patient. When serum from 3 patients was subjected to Sephadex G-100 gel filtration, immunoreactive alpha-subunit eluted in a single peak, which emerged in fractions corresponding to [125I]TSH alpha. Concanavalin A (Con A) affinity chromatography revealed that the major portion of immunoreactive alpha-subunit was retained to Con A. A pituitary adenoma removed at surgery from a patient with acromegaly was studied in monolayer cell culture. Secretion of both alpha-subunit and GH from cultured adenoma cells was stimulated by TRH and suppressed by dopamine in a dose-dependent manner. Immunohistochemistry of the pituitary adenomas removed from patients with prolactinoma and acromegaly who had high serum alpha-subunit levels demonstrated alpha-subunit-containing cells as well as PRL- or GH-containing cells. These results suggest that elaboration of glycoprotein hormone alpha-subunit occurs without concurrent production of glycoprotein hormones in a substantial number of patients with pituitary adenomas and that alpha-subunit responses to stimuli in such adenomas are generally parallel with those of the concomitantly produced hormones.

UI MeSH Term Description Entries
D008297 Male Males
D008593 Menopause The last menstrual period. Permanent cessation of menses (MENSTRUATION) is usually defined after 6 to 12 months of AMENORRHEA in a woman over 45 years of age. In the United States, menopause generally occurs in women between 48 and 55 years of age. Change of Life, Female
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010908 Pituitary Hormones, Anterior Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Structurally, they include polypeptide, protein, and glycoprotein molecules. Adenohypophyseal Hormones,Anterior Pituitary Hormones,Hormones, Adenohypophyseal,Hormones, Anterior Pituitary
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D001971 Bromocriptine A semisynthetic ergotamine alkaloid that is a dopamine D2 agonist. It suppresses prolactin secretion. 2-Bromoergocryptine,Bromocryptin,2-Bromo-alpha-ergocryptine,2-Bromo-alpha-ergokryptine,2-Bromoergocryptine Mesylate,2-Bromoergocryptine Methanesulfonate,2-Bromoergokryptine,Bromocriptin,Bromocriptine Mesylate,CB-154,Parlodel,2 Bromo alpha ergocryptine,2 Bromo alpha ergokryptine,2 Bromoergocryptine,2 Bromoergocryptine Mesylate,2 Bromoergocryptine Methanesulfonate,2 Bromoergokryptine,CB 154,CB154,Mesylate, 2-Bromoergocryptine,Mesylate, Bromocriptine,Methanesulfonate, 2-Bromoergocryptine
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography

Related Publications

M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima
July 2010, Nihon rinsho. Japanese journal of clinical medicine,
M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima
August 2005, Nihon rinsho. Japanese journal of clinical medicine,
M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima
September 1980, Clinical endocrinology,
M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima
October 1997, Orvosi hetilap,
M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima
January 1999, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima
July 1976, The Journal of clinical endocrinology and metabolism,
M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima
March 1992, Trends in endocrinology and metabolism: TEM,
M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima
February 1994, Endocrinology,
M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima
December 1991, The Journal of clinical endocrinology and metabolism,
M Ishibashi, and T Yamaji, and F Takaku, and A Teramoto, and T Fukushima
January 1989, Polski tygodnik lekarski (Warsaw, Poland : 1960),
Copied contents to your clipboard!