Excitatory amino acid receptors and depolarization-induced Ca2+ influx into hippocampal slices. 1987

J M Crowder, and M J Croucher, and H F Bradford, and J F Collins

Hippocampal brain slices were incubated with depolarizing agents or excitatory amino acids either alone or in the presence of excitatory amino acid antagonists [omega-phosphonic alpha-aminocarboxylic acids--2-amino-4-phosphonobutyric acid (AP4), 2-amino-5-phosphonovaleric acid (AP5), or 2-amino-7-phosphonoheptanoic acid (AP7)--or gamma-D-glutamylaminomethylsulphonic acid (GAMS)] or a calcium-channel blocker, (S)-1-(3-methoxyphenyl)-3-methylaza-7-cyano-7-(3,4-dimethoxyphenyl )-8-methyl- nonane hydrochloride [(-)-D888]. The uptake of 45Ca2+ and the efflux of glutamate or aspartate induced by veratrine or high K+ was blocked (54-76%) by AP7 (IC50 46-250 microM). AP5 and AP4 were less effective. (-)-D888 (10 microM) caused 100% block of evoked 45Ca2+ uptake. Uptake of 45Ca2+ induced by exogenous glutamate, aspartate, and N-methyl-D-aspartate (NMDA) was also inhibited by AP7, whereas GAMS completely blocked the action of kainate and partially blocked that of glutamate. The action of NMDA in stimulating 45Ca2+ uptake was Mg2+-sensitive, low Mg2+ levels in the incubation medium selectively enhancing the response. It is concluded that Ca2+ uptake evoked by excitatory amino acids is receptor-mediated, and that released excitatory amino acids are responsible for a large part of the action of veratrine and high K+ in stimulating 45Ca2+ uptake.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J M Crowder, and M J Croucher, and H F Bradford, and J F Collins
June 1987, Neuroscience,
J M Crowder, and M J Croucher, and H F Bradford, and J F Collins
October 1994, Neuroscience,
J M Crowder, and M J Croucher, and H F Bradford, and J F Collins
September 1991, Journal of neurochemistry,
J M Crowder, and M J Croucher, and H F Bradford, and J F Collins
December 1992, Journal of neurochemistry,
J M Crowder, and M J Croucher, and H F Bradford, and J F Collins
July 1989, Journal of neuroscience methods,
J M Crowder, and M J Croucher, and H F Bradford, and J F Collins
June 1998, The European journal of neuroscience,
J M Crowder, and M J Croucher, and H F Bradford, and J F Collins
September 1986, Neuroscience research,
J M Crowder, and M J Croucher, and H F Bradford, and J F Collins
April 1990, Pharmacology, biochemistry, and behavior,
J M Crowder, and M J Croucher, and H F Bradford, and J F Collins
April 1999, European journal of pharmacology,
J M Crowder, and M J Croucher, and H F Bradford, and J F Collins
January 1992, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!