Cholesterol hydroperoxides and their degradation mechanism. 2014

Junji Terao
Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, 770-8503, Japan, terao@nutr.med.tokushima-u.ac.jp.

Cholesterol is one of the oxidizable lipids constituting biomembranes and plasma lipoproteins. Cholesterol hydroperoxides (Chol-OOH) are the primary products if cholesterol is subjected to attack by reactive oxygen species. In particular, singlet molecular oxygen reacts with cholesterol to yield cholesterol 5α-hydroperoxide as the major hydroperoxide species. Chol-OOH may accumulate in biological systems because of its resistance to glutathione-dependent enzymatic detoxification reactions. Their degradation products (including hydroxycholesterol and 7-ketocholesterol) participate in the pathophysiological functions of oxysterols. Highly reactive cholesterol 5,6-secosterol present in atherosclerotic lesions can be derived from the degradation of cholesterol 5α-hydroperoxide. Chol-OOH themselves may affect the lipid rafts of biomembranes, thereby leading to the modification of signal transduction pathways.

UI MeSH Term Description Entries
D007653 Ketocholesterols Cholesterol substituted in any position by a keto moiety. The 7-keto isomer inhibits cholesterol uptake in the coronary arteries and aorta by blocking 3-hydroxy-3-methylglutaryl-CoA reductase activity. Oxocholesterols
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D026082 Singlet Oxygen An excited state of molecular oxygen generated photochemically or chemically. Singlet oxygen reacts with a variety of biological molecules such as NUCLEIC ACIDS; PROTEINS; and LIPIDS; causing oxidative damages. Singlet Dioxygen,Dioxygen, Singlet,Oxygen, Singlet
Copied contents to your clipboard!