Distinct functions of antigenic sites of the HN glycoprotein of Sendai virus. 1987

A Portner, and R A Scroggs, and D W Metzger

Monoclonal antibodies specific for the hemagglutinin-neuraminidase (HN) glycoprotein of Sendai virus were used to examine the antigenic structure of HN and its role in the initiation of infection and immunity. Using 10 anti-HN antibodies, four distinct antigenic sites designated I-IV were topographically mapped on the HN molecule by competitive-binding assays. To relate the biological functions of HN to its antigenic structure, anti-HN antibodies were analyzed for their inhibitory activity in neuraminidase, hemagglutination, and hemolysis inhibition tests. Antibodies to antigenic site I inhibited hemagglutination and one of these antibodies also inhibited neuraminidase activity. Antibodies to site II inhibited neither activity. However, hemolysis an F protein activity was inhibited, suggesting that these antibodies which bind to HN interfere with F-mediated fusion. Antigenic sites III and IV had different effects on the hemagglutinating and neuraminidase functions of HN: Site III antibodies inhibited hemagglutination while antibodies to site IV only inhibited neuraminidase activity. Antibodies to each antigenic site inhibited virus production. Since antibodies to sites I and III inhibited hemagglutination, it is likely that they block virus adsorption. Antibodies to HN site II only inhibited hemolysis, and therefore, may prevent virus penetration. Antibodies reacting with site IV inhibited virus production after virus penetration. Since neuraminidase activity was the only function inhibited, the viral enzyme may be involved in virus release. The fact that site IV antibodies inhibited neuraminidase but not hemagglutination suggests that these sites are distinct.

UI MeSH Term Description Entries
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D010222 Parainfluenza Virus 1, Human A species of RESPIROVIRUS also called hemadsorption virus 2 (HA2), which causes laryngotracheitis in humans, especially children. Hemadsorption Virus 2,Human parainfluenza virus 1,Para-Influenza Virus Type 1,Parainfluenza Virus Type 1,Para Influenza Virus Type 1
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006387 Hemagglutination, Viral Agglutination of ERYTHROCYTES by a virus. Hemagglutinations, Viral,Viral Hemagglutination,Viral Hemagglutinations
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer

Related Publications

A Portner, and R A Scroggs, and D W Metzger
January 1981, Bollettino dell'Istituto sieroterapico milanese,
A Portner, and R A Scroggs, and D W Metzger
January 1984, The Journal of general virology,
A Portner, and R A Scroggs, and D W Metzger
March 1990, Virology,
A Portner, and R A Scroggs, and D W Metzger
January 1998, Romanian journal of virology,
A Portner, and R A Scroggs, and D W Metzger
February 1989, Virology,
A Portner, and R A Scroggs, and D W Metzger
January 1994, Journal of virology,
Copied contents to your clipboard!