Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. 1987

H Kita, and S T Kitai

Efferent projections of rat subthalamic nucleus were studied by use of the axonal transport of phaseolus vulgaris-leucoagglutinin (PHA-L), and the results were analyzed with light and electron microscopes. PHA-L injections in the subthalamic nucleus (STH) resulted in heavy labeling of fiber plexus with en passant boutons and terminals in the pallidal complex, i.e., the entopeduncular nucleus (EP), the globus pallidus (GP) and the ventral pallidum (VP), and the substantia nigra pars reticulata (SNR). Labeling in GP was characterized by two distinct bands of labeled terminals oriented dorsoventrally, whereas labeling in SNR was patchy. STH efferents to the pallidum and SNR displayed a mediolateral topographic organization. With regard to dorsoventral organization, projections to GP were inverted, but those to SNR were not. There were moderate projections to the neostriatum and sparse projections to the frontal cortex, substantia innominata, substantia nigra pars compacta (SNC), pedunculopontine tegmental nucleus, ventral part of the central gray matter including the dorsal raphe nucleus, and the mesencephalic and pontine reticular formation. PHA-L injections in the zona incerta and the lateral hypothalamic area resulted in fiber and terminal labelings in many structures, including the basal forebrain, EP, SNC, and other brainstem areas that overlap with some of the terminal sites of STH projections. Ultrastructural observations of PHA-L labeled processes in GP and SNR revealed that STH terminals in both structures contained small pleomorphic vesicles and formed asymmetrical contacts. These contacts were mainly on dendritic shafts, but some were on somata. It also was observed that the myelinated axons of STH neurons lost their myelin after reaching their target areas and the synaptic boutons arose from relatively thin unmyelinated axons.

UI MeSH Term Description Entries
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D005917 Globus Pallidus The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus. Paleostriatum,Pallidum,Pallidums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Kita, and S T Kitai
January 1974, Transactions of the American Neurological Association,
H Kita, and S T Kitai
December 1992, The Journal of comparative neurology,
H Kita, and S T Kitai
August 1995, The Journal of comparative neurology,
H Kita, and S T Kitai
February 1994, The Journal of comparative neurology,
H Kita, and S T Kitai
November 1991, The Journal of comparative neurology,
Copied contents to your clipboard!