Effect of risperidone on the fluoxetine-induced changes in extracellular dopamine, serotonin and noradrenaline in the rat frontal cortex. 2013

Katarzyna Kamińska, and Krystyna Gołembiowska, and Zofia Rogóż
Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland. rogoz@if-pan.krakow.pl.

BACKGROUND Several clinical reports have documented a beneficial effect of the addition of a low dose of risperidone to the ongoing treatment with antidepressants, in particular selective serotonin reuptake inhibitors, in the treatment of drug resistant depression. The aim of our study was to understand the mechanism of the clinical efficacy of a combination of fluoxetine (FLU) and risperidone (RIS) in drug-resistant depression. We studied the effect of FLU and RIS, given separately or jointly on the extracellular levels of dopamine (DA), serotonin (5-HT) and noradrenaline (NA) in the rat frontal cortex. METHODS Animals were given single intraperitoneal injections of RIS at a doses of 0.1 or 1 mg/kg and FLU at a dose of 10 mg/kg. The release of DA, 5-HT and NA in the rat frontal cortex was investigated using microdialysis in freely moving animals. The extracellular level of DA, 5-HT and NA was assayed by HPLC with coulochemical detection. RESULTS RIS (0.1 and 1 mg/kg) and FLU (10 mg/kg) increased the extracellular level of cortical DA, 5-HT and NA. Co-treatment of both drugs was more effective in increasing DA release than administration of each of the drugs alone at doses of RIS 1 mg/kg and FLU 10 mg/kg. Co-treatment of FLU and RIS 0.1 mg/kg was more potent than FLU alone, while the effect of joint injection of FLU and RIS 1 mg/kg was stronger than RIS 1 mg/kg alone on 5-HT release. The combination of FLU with both doses of RIS was not effective in increasing NA release as compared to drugs given alone. CONCLUSIONS Our data indicate that the effect of the combined administration of RIS and FLU on DA and 5-HT release in the rat frontal cortex may be of crucial importance to the pharmacotherapy of drug resistant depression.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005473 Fluoxetine The first highly specific serotonin uptake inhibitor. It is used as an antidepressant and often has a more acceptable side-effects profile than traditional antidepressants. Fluoxetin,Fluoxetine Hydrochloride,Lilly-110140,N-Methyl-gamma-(4-(trifluoromethyl)phenoxy)benzenepropanamine,Prozac,Sarafem,Lilly 110140,Lilly110140
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014150 Antipsychotic Agents Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus. Antipsychotic,Antipsychotic Agent,Antipsychotic Drug,Antipsychotic Medication,Major Tranquilizer,Neuroleptic,Neuroleptic Agent,Neuroleptic Drug,Neuroleptics,Tranquilizing Agents, Major,Antipsychotic Drugs,Antipsychotic Effect,Antipsychotic Effects,Antipsychotics,Major Tranquilizers,Neuroleptic Agents,Neuroleptic Drugs,Tranquillizing Agents, Major,Agent, Antipsychotic,Agent, Neuroleptic,Drug, Antipsychotic,Drug, Neuroleptic,Effect, Antipsychotic,Major Tranquilizing Agents,Major Tranquillizing Agents,Medication, Antipsychotic,Tranquilizer, Major

Related Publications

Katarzyna Kamińska, and Krystyna Gołembiowska, and Zofia Rogóż
January 2010, Pharmacological reports : PR,
Katarzyna Kamińska, and Krystyna Gołembiowska, and Zofia Rogóż
March 1998, European journal of pharmacology,
Katarzyna Kamińska, and Krystyna Gołembiowska, and Zofia Rogóż
March 2003, Naunyn-Schmiedeberg's archives of pharmacology,
Katarzyna Kamińska, and Krystyna Gołembiowska, and Zofia Rogóż
December 2005, European journal of pharmacology,
Katarzyna Kamińska, and Krystyna Gołembiowska, and Zofia Rogóż
January 1998, Journal of psychopharmacology (Oxford, England),
Katarzyna Kamińska, and Krystyna Gołembiowska, and Zofia Rogóż
December 1996, European journal of pharmacology,
Katarzyna Kamińska, and Krystyna Gołembiowska, and Zofia Rogóż
June 2012, Canadian journal of physiology and pharmacology,
Katarzyna Kamińska, and Krystyna Gołembiowska, and Zofia Rogóż
January 1991, Advances in experimental medicine and biology,
Katarzyna Kamińska, and Krystyna Gołembiowska, and Zofia Rogóż
May 1993, European journal of pharmacology,
Copied contents to your clipboard!