Genetics of single-cell protein abundance variation in large yeast populations. 2014

Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
1] Department of Human Genetics, University of California, Los Angeles, California 90095, USA [2] Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.

Variation among individuals arises in part from differences in DNA sequences, but the genetic basis for variation in most traits, including common diseases, remains only partly understood. Many DNA variants influence phenotypes by altering the expression level of one or several genes. The effects of such variants can be detected as expression quantitative trait loci (eQTL). Traditional eQTL mapping requires large-scale genotype and gene expression data for each individual in the study sample, which limits sample sizes to hundreds of individuals in both humans and model organisms and reduces statistical power. Consequently, many eQTL are probably missed, especially those with smaller effects. Furthermore, most studies use messenger RNA rather than protein abundance as the measure of gene expression. Studies that have used mass-spectrometry proteomics reported unexpected differences between eQTL and protein QTL (pQTL) for the same genes, but these studies have been even more limited in scope. Here we introduce a powerful method for identifying genetic loci that influence protein expression in the yeast Saccharomyces cerevisiae. We measure single-cell protein abundance through the use of green fluorescent protein tags in very large populations of genetically variable cells, and use pooled sequencing to compare allele frequencies across the genome in thousands of individuals with high versus low protein abundance. We applied this method to 160 genes and detected many more loci per gene than previous studies. We also observed closer correspondence between loci that influence protein abundance and loci that influence mRNA abundance of a given gene. Most loci that we detected were clustered in 'hotspots' that influence multiple proteins, and some hotspots were found to influence more than half of the proteins that we examined. The variants that underlie these hotspots have profound effects on the gene regulatory network and provide insights into genetic variation in cell physiology between yeast strains.

UI MeSH Term Description Entries
D005787 Gene Frequency The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION. Allele Frequency,Genetic Equilibrium,Equilibrium, Genetic,Allele Frequencies,Frequencies, Allele,Frequencies, Gene,Frequency, Allele,Frequency, Gene,Gene Frequencies
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D016681 Genome, Fungal The complete gene complement contained in a set of chromosomes in a fungus. Fungal Genome,Fungal Genomes,Genomes, Fungal

Related Publications

Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
December 2023, bioRxiv : the preprint server for biology,
Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
March 2024, Communications biology,
Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
September 2021, RSC advances,
Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
February 2015, Ecology and evolution,
Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
October 1986, Heredity,
Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
December 1973, The Journal of cell biology,
Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
November 2010, Lab on a chip,
Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
January 2016, PloS one,
Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
August 2016, Genetics,
Frank W Albert, and Sebastian Treusch, and Arthur H Shockley, and Joshua S Bloom, and Leonid Kruglyak
September 2006, Genetics,
Copied contents to your clipboard!