Is motor-imagery brain-computer interface feasible in stroke rehabilitation? 2014

Wei-Peng Teo, and Effie Chew
School of Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, Queensland, 4702, Australia(∗). Electronic address: teoweipeng@hotmail.com.

In the past 3 decades, interest has increased in brain-computer interface (BCI) technology as a tool for assisting, augmenting, and rehabilitating sensorimotor functions in clinical populations. Initially designed as an assistive device for partial or total body impairments, BCI systems have since been explored as a possible adjuvant therapy in the rehabilitation of patients who have had a stroke. In particular, BCI systems incorporating a robotic manipulanda to passively manipulate affected limbs have been studied. These systems can use a range of invasive (ie, intracranial implanted electrodes) or noninvasive neurophysiologic recording techniques (ie, electroencephalography [EEG], near-infrared spectroscopy, and magnetoencephalography) to establish communication links between the brain and the BCI system. Trials are most commonly performed on EEG-based BCI in comparison with the other techniques because of its high temporal resolution, relatively low setup costs, portability, and noninvasive nature. EEG-based BCI detects event-related desynchronization/synchronization in sensorimotor oscillatory rhythms associated with motor imagery (MI), which in turn drives the BCI. Previous evidence suggests that the process of MI preferentially activates sensorimotor regions similar to actual task performance and that repeated practice of MI can induce plasticity changes in the brain. It is therefore postulated that the combination of MI and BCI may augment rehabilitation gains in patients who have had a stroke by activating corticomotor networks via MI and providing sensory feedback from the affected limb using end-effector robots. In this review we examine the current literature surrounding the feasibility of EEG-based MI-BCI systems in stroke rehabilitation. We also discuss the limitations of using EEG-based MI-BCI in patients who have had a stroke and suggest possible solutions to overcome these limitations.

UI MeSH Term Description Entries
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005240 Feasibility Studies Studies to determine the advantages or disadvantages, practicability, or capability of accomplishing a projected plan, study, or project. Feasibility Study,Studies, Feasibility,Study, Feasibility
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071939 Stroke Rehabilitation Restoration of functions to the maximum degree possible in a person or persons suffering from a stroke. Rehabilitation, Stroke
D062207 Brain-Computer Interfaces Instrumentation consisting of hardware and software that communicates with the BRAIN. The hardware component of the interface records brain signals, while the software component analyzes the signals and converts them into a command that controls a device or sends a feedback signal to the brain. Brain Machine Interface,Brain-Computer Interface,Brain-Machine Interfaces,Brain Computer Interface,Brain Computer Interfaces,Brain Machine Interfaces,Brain-Machine Interface,Interface, Brain Machine,Interface, Brain-Computer,Interface, Brain-Machine,Interfaces, Brain Machine,Interfaces, Brain-Computer,Interfaces, Brain-Machine,Machine Interface, Brain,Machine Interfaces, Brain
D020521 Stroke A group of pathological conditions characterized by sudden, non-convulsive loss of neurological function due to BRAIN ISCHEMIA or INTRACRANIAL HEMORRHAGES. Stroke is classified by the type of tissue NECROSIS, such as the anatomic location, vasculature involved, etiology, age of the affected individual, and hemorrhagic vs. non-hemorrhagic nature. (From Adams et al., Principles of Neurology, 6th ed, pp777-810) Apoplexy,Cerebral Stroke,Cerebrovascular Accident,Cerebrovascular Apoplexy,Vascular Accident, Brain,CVA (Cerebrovascular Accident),Cerebrovascular Accident, Acute,Cerebrovascular Stroke,Stroke, Acute,Acute Cerebrovascular Accident,Acute Cerebrovascular Accidents,Acute Stroke,Acute Strokes,Apoplexy, Cerebrovascular,Brain Vascular Accident,Brain Vascular Accidents,CVAs (Cerebrovascular Accident),Cerebral Strokes,Cerebrovascular Accidents,Cerebrovascular Accidents, Acute,Cerebrovascular Strokes,Stroke, Cerebral,Stroke, Cerebrovascular,Strokes,Strokes, Acute,Strokes, Cerebral,Strokes, Cerebrovascular,Vascular Accidents, Brain

Related Publications

Wei-Peng Teo, and Effie Chew
January 2012, Studies in health technology and informatics,
Wei-Peng Teo, and Effie Chew
September 2023, Journal of visualized experiments : JoVE,
Wei-Peng Teo, and Effie Chew
July 2018, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Wei-Peng Teo, and Effie Chew
September 2023, Journal of visualized experiments : JoVE,
Wei-Peng Teo, and Effie Chew
July 2022, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Wei-Peng Teo, and Effie Chew
May 2015, Annals of neurology,
Wei-Peng Teo, and Effie Chew
December 2020, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society,
Copied contents to your clipboard!