Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea. 2014

Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1051, Institut des Neurosciences de Montpellier, 34091 Montpellier, France.

Inner hair cells (IHCs) are the primary transducer for sound encoding in the cochlea. In contrast to the graded receptor potential of adult IHCs, immature hair cells fire spontaneous calcium action potentials during the first postnatal week. This spiking activity has been proposed to shape the tonotopic map along the ascending auditory pathway. Using perforated patch-clamp recordings, we show that developing IHCs fire spontaneous bursts of action potentials and that this pattern is indistinguishable along the basoapical gradient of the developing cochlea. In both apical and basal IHCs, the spiking behavior undergoes developmental changes, where the bursts of action potential tend to occur at a regular time interval and have a similar length toward the end of the first postnatal week. Although disruption of purinergic signaling does not interfere with the action potential firing pattern, pharmacological ablation of the α9α10 nicotinic receptor elicits an increase in the discharge rate. We therefore suggest that in addition to carrying place information to the ascending auditory nuclei, the IHCs firing pattern controlled by the α9α10 receptor conveys a temporal signature of the cochlear development.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D006199 Hair Cells, Auditory, Inner Auditory sensory cells of organ of Corti, usually placed in one row medially to the core of spongy bone (the modiolus). Inner hair cells are in fewer numbers than the OUTER AUDITORY HAIR CELLS, and their STEREOCILIA are approximately twice as thick as those of the outer hair cells. Auditory Hair Cell, Inner,Auditory Hair Cells, Inner,Cochlear Inner Hair Cell,Cochlear Inner Hair Cells,Hair Cell, Auditory, Inner,Inner Auditory Hair Cell,Inner Auditory Hair Cells,Inner Hair Cells,Cell, Inner Hair,Cells, Inner Hair,Hair Cell, Inner,Hair Cells, Inner,Inner Hair Cell
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D059329 Cholinergic Neurons Neurons whose primary neurotransmitter is ACETYLCHOLINE. Cholinergic Neuron,Neuron, Cholinergic,Neurons, Cholinergic
D062211 Spatio-Temporal Analysis Techniques which study entities using their topological, geometric, or geographic properties and include the dimension of time in the analysis. Space-Time Geography,Spatial Temporal Analysis,Spatiotemporal Analysis,Analyses, Spatial Temporal,Analyses, Spatio-Temporal,Analyses, Spatiotemporal,Analysis, Spatial Temporal,Analysis, Spatio-Temporal,Analysis, Spatiotemporal,Geographies, Space-Time,Geography, Space-Time,Space Time Geography,Space-Time Geographies,Spatial Temporal Analyses,Spatio Temporal Analysis,Spatio-Temporal Analyses,Spatiotemporal Analyses,Temporal Analyses, Spatial,Temporal Analysis, Spatial

Related Publications

Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
March 2015, Biophysical journal,
Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
October 2002, Hearing research,
Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
March 2010, Journal of the Association for Research in Otolaryngology : JARO,
Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
June 2017, The Journal of physiology,
Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
January 2018, Frontiers in molecular neuroscience,
Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
December 1999, Pflugers Archiv : European journal of physiology,
Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
June 2004, Synapse (New York, N.Y.),
Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
August 2021, Hearing research,
Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
January 2010, Brain research,
Gaston Sendin, and Jérôme Bourien, and François Rassendren, and Jean-Luc Puel, and Régis Nouvian
January 2005, Audiology & neuro-otology,
Copied contents to your clipboard!