Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle. 1987

T Clausen, and M E Everts, and K Kjeldsen
Institute of Physiology, Aarhus University, Denmark.

1. Intact skeletal muscle fibres have been shown to contain a high concentration of [3H]ouabain binding sites (100-800 pmol g wet wt.-1). Under resting conditions, however, it seems that in isolated muscles only 2-6% of the corresponding expected capacity for active Na+-K+ transport is utilized. 2. In order to determine whether all [3H]ouabain binding sites in rat soleus muscle represent functional Na+-K+ pumps, we have measured the maximum rates of the ouabain-suppressible components of isotopic fluxes of Na+ and K+ as well as the net changes in Na+-K+ contents. 3. Experiments with soleus muscles isolated from 4-week-old rats showed that following Na+ loading (I.C. Na+, 126 mmol l-1), the ouabain-suppressible 86Rb+ uptake and 22Na+ efflux as measured during 3 min of exposure to K+-rich buffer were 5800 and 6500 nmol g wet wt.-1 min-1, respectively. 4. These initial high rates of isotopic fluxes were confirmed by flame photometric measurements of Na+-K+ contents. The ouabain-suppressible 86Rb+ uptake had a temperature coefficient of 2.1, was inhibited by 2,4-dinitrophenol, but showed no response to tetracaine, BaCl2, Ca2+-free buffer or tetraethylammonium chloride. 5. In soleus muscles, where the total population of [3H]ouabain binding sites had undergone changes as a result of differentiation, K+ depletion or pre-treatment with thyroid hormone, there was a significant correlation (r = 0.95, P less than 0.005) between the concentration of [3H]ouabain binding sites (260-1170 pmol g wet wt.-1) and the maximum ouabain-suppressible 86Rb+ uptake (2300-10,900 nmol g wet wt.-1 min-1). 6. It is concluded that by the combination of Na+ loading and high extracellular K+, the available Na+-K+ pumps as quantified by the [3H]ouabain binding capacity can be activated to reach a transport rate around 90% of the theoretical maximum at 30 degrees C.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012413 Rubidium An element that is an alkali metal. It has an atomic symbol Rb, atomic number 37, and atomic weight 85.47. It is used as a chemical reagent and in the manufacture of photoelectric cells.
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

T Clausen, and M E Everts, and K Kjeldsen
August 1983, The Journal of physiology,
T Clausen, and M E Everts, and K Kjeldsen
January 1988, Progress in clinical and biological research,
T Clausen, and M E Everts, and K Kjeldsen
February 1970, The Japanese journal of physiology,
T Clausen, and M E Everts, and K Kjeldsen
December 1979, The Journal of physiology,
T Clausen, and M E Everts, and K Kjeldsen
January 1964, Federation proceedings,
T Clausen, and M E Everts, and K Kjeldsen
June 1984, Pflugers Archiv : European journal of physiology,
T Clausen, and M E Everts, and K Kjeldsen
September 1974, The Journal of physiology,
T Clausen, and M E Everts, and K Kjeldsen
May 1968, Journal of colloid and interface science,
T Clausen, and M E Everts, and K Kjeldsen
July 1958, Polski tygodnik lekarski,
Copied contents to your clipboard!