Antibody and cell-mediated immunity to pertussis 4 years after monovalent acellular pertussis vaccine at birth. 2014

Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
From the *National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, The Children's Hospital at Westmead and the University of Sydney, New South Wales; †The Children's Hospital, Westmead, Sydney; ‡The University of Sydney, New South Wales, Australia; §Discipline of Paediatrics, School of Paediatrics and Reproductive Health and the Robinson Institute, The University of Adelaide; ¶Vaccinology and Immunology Research Trials Unit, Women's and Children's Hospital, Women's and Children's Health Network, South Australia; ‖Telethon Institute for Child Health Research and Centre for Child Health Research, Faculty of Medicine and Dentistry, The University of Western Australia, Perth; and **Queensland Children's Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia.

BACKGROUND In a previous study, we found that monovalent acellular pertussis (aP) vaccine at birth and 1 month achieves higher IgG antibody (Ab) levels to pertussis toxoid (PT), filamentous hemagglutinin (FHA) and pertactin by 8 weeks, when compared with controls. Here, we report antibody and cell-mediated immune responses to 4 years of age. METHODS IgG Ab to PT, filamentous hemagglutinin and pertactin, diphtheria (D) and tetanus (T) was measured in the 3 groups (aP vaccine at birth and 1 month, aP birth only and no aP) at 2 years of age and before and after DTaP-inactivated polio vaccine (DTaP-IPV) at 4 years of age. Cell-mediated immune responses to pertussis vaccine antigens were measured at 2 years of age. Adverse events following DTaP-IPV were recorded. RESULTS Of 74 subjects, 52 (70%) were available for follow up. Overall, 11 (21%) had detectable PT IgG at 2 years, decreasing to 10% before 4-year-old booster compared with 100% at 8 months of age. After the 4-year booster, pertussis antigen IgG levels were similar, but there was a trend to lower PT IgG levels in birth aP infants (geometric mean concentrations: 28.7 EI.U/mL) compared with controls (geometric mean concentrations: 53.6 EI.U/mL). The cytokine responses to pertussis antigen stimulation were higher in aP recipients at 2 years of age. There was no difference in injection site reactions among groups following the DTaP-IPV booster at 4 years of age. CONCLUSIONS In the longest reported follow-up of infants who received aP vaccine at birth, we found a trend to lower PT IgG antibodies post booster compared with receipt of first dose of aP-containing vaccine at 8 weeks of age. Short- and long-term antibody responses with and without prior maternal pertussis vaccination are crucial for further evaluation of this strategy for preventing severe early pertussis.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007223 Infant A child between 1 and 23 months of age. Infants
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008297 Male Males
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010567 Pertussis Vaccine A suspension of killed Bordetella pertussis organisms, used for immunization against pertussis (WHOOPING COUGH). It is generally used in a mixture with diphtheria and tetanus toxoids (DTP). There is an acellular pertussis vaccine prepared from the purified antigenic components of Bordetella pertussis, which causes fewer adverse reactions than whole-cell vaccine and, like the whole-cell vaccine, is generally used in a mixture with diphtheria and tetanus toxoids. (From Dorland, 28th ed) Vaccine, Pertussis
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D004167 Diphtheria Toxin An ADP-ribosylating polypeptide produced by CORYNEBACTERIUM DIPHTHERIAE that causes the signs and symptoms of DIPHTHERIA. It can be broken into two unequal domains: the smaller, catalytic A domain is the lethal moiety and contains MONO(ADP-RIBOSE) TRANSFERASES which transfers ADP RIBOSE to PEPTIDE ELONGATION FACTOR 2 thereby inhibiting protein synthesis; and the larger B domain that is needed for entry into cells. Corynebacterium Diphtheriae Toxin,Toxin, Corynebacterium Diphtheriae
D005260 Female Females

Related Publications

Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
July 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America,
Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
October 1996, Infection and immunity,
Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
January 1992, Vaccine,
Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
June 2000, The Journal of infectious diseases,
Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
March 1995, European journal of pediatrics,
Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
December 1986, The Journal of pediatrics,
Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
May 2003, Pediatrics,
Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
April 2018, Mikrobiyoloji bulteni,
Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
July 1992, The Pediatric infectious disease journal,
Nicholas Wood, and Helen Marshall, and Olivia J White, and Patrick G Holt, and Peter McIntyre
October 1998, Vaccine,
Copied contents to your clipboard!